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ABOUT DEPARTMENT
¢ Established in: 2002

4 Course offered : B.Tech in Computer Science and Engineering
M.Tech in Computer Science and Engineering
M.Tech in Cyber Security

¢ Approved by AICTE New Delhi and Accredited by NAAC

¢ Affiliated to the University of A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

. To Impart Quality Education by creative Teaching Learning Process

. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.
. To Inculcate Entrepreneurship Skills among Students.

. To cultivate Moral and Ethical VValues in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEOL: Graduates will be able to Work and Contribute in the domains of Computer Science and
Engineering through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software
Packages, Web Services, System Tools and Components as per needs and
specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing
environment by learning and applying new technologies.

PEOA4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.
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PROGRAM OUTCOMES (POS)
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

.Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSOL1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-
time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality
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System Software Tools and Efficient Web Design Models with a focus on performance
optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create
innovative career path and for the socially relevant issues.

COURSE OUTCOMES

CO1 | To acquire the knowledge of Scope and binding of names in different programming
languages. To analyze control flow structures in different programming languages.

CO2 | To appraise data types in different programming languages.

CO3 | To acquire the knowledge of Subroutines and Co- routines.

CO4 | To appraise constructs in functional, logic and scripting languages.

CO5 | To analyze object oriented constructs in different programming languages.

CO6 | To Learn different concurrency constructs.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

2 3
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Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES
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SYLLABUS
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Course
code
CS403 PROGRAMMING PARADIGMS l08.3
Course Objectives:
¢  To imtrodace the basic consaructs that underbie all progransming languages
¢  To imtrodece the basics of programsming language design and implementation
e  To lssrodece the organtzational fmmework for leaming sew programming languages

Syllabus:

Names, Scopes, and Bindings - Binding Time, Scope Rules, Scorage Management, Overloading,
Polymoerphism; Comtrol Flow - Expeession Evaluation, Ssuctured and Unstructured Flow, Nan-
detenmminacy; Data Types < Type Sysiems, Type Checking, Equality Testing and Assignment:
Subrosines and Costrol Abstraction - Stic and Dynansie Links, Calling Sequences, Parameter
Passang, Exception Handlisg, Co-soutines; Functonal and Logic Languages; Dat Abstraction
and Object Onentatice -Encapsulation, Inheriance, Dynamic Method Binding: Innovauve
features of Scnpung lLangeages; Concarescy - Threads, Syschroniztos, Lasgeage-level
Mechanisms, Rum-time peogram Manageosent.

Expected Outcome:
The Stadents will be ahle 10 :
L compare scope and binding of names s different programmung langeages
i analyze comerod flow structures o different prograneming langeages
I appraise data types in different programmsing lasguages
0 analyze different control abstraction mechanisms
V. appeaise constructs in fenctional, logee and scripting langeages
vi.  analyze object oriented consmucts i ddferest programming lnguages
Vit compare different CONORMEnCy CORSINacts
vilk.  interpeet the concepts of Mun- Sme Program manigement
Text book:
1. Scom M L, Programesing Language Pragmatics, 3rd Eda . Morgan Kaufmass Publishers,
2001

Course Name L-T4F Credits

References:
David A Wan, Programming Lasgeage Desiga Conceprs, Wiley Drcanmsech, 2004
Ghezzi C and M. Jazayen, Programming Language Comcepes, Snd Edn, Wiley. 1997
Kenneth C Louden, Programming Langsages: Prianciples and Practice, 3ad Edn., Cengage
Leamning, 200 1.
Pran T W. MV Zelkowitz, and T. V. Gopal, Programming Langeuges: Design and
Implementgion, 4th Edn., Pearson Edacation, 2001
R W Sebesta, Concepts of Programming Lamgeages, | 1th Edn., Pearson Educatson, 2015
Ravi Sechi, Programming Languages: Concepts & Coastructs, 2nd Edn., Pearson
Educamon, 2000
Tucker A B and R E Noonan, Programming Languages: Principles and Paradigms, 2nd
Edn McGraw Hill, 2006,
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Coatents

Names, Scopes and Bindiags:- Names and Scopes, Binding Thane,
Scope Rules, Sweage Maugemest Binding of Referencing
Enviroameses.

Controd  Flow: - Expression  Evalusson, Svucsured  and
Unstractured Flow, Sequencing, Selection, lteratwa, Recursion,
Noa-detemamacy .

Duta Types:-Type Systems, Type Checking, Reconds and Variants,
Arrays, Sonags, Sets, Poissers and Recarsave Types, L, Files

and Input/Outper, Eguality Testing and Asstgament

FIRST INTERNAL EXAM

Subroutines and Control Abstraction: - Sutic and Dynamic Links,
Calling Sequences, Parumeser Passing, Generic Subroutines and
Modules, Exception Haadling, Co-routines.

Functional and Logic Languages:- Lambda Calculus, Overview of
Scheme, Strictness and Lazy Evaluation, Streams and Mosads,
Higher-Ouder Functions, Logic Progmmmiag in Prolog,
Limitatioss of Logic Progranming.

SECOND INTERNAL EXAM
Data  Abstractica  aad  Objeat Onentitioo:-Encapsulation,
lebentance, Construcsors and Desnsctors, Allasing, Overloading,
Polymornpdesm, Dynamee Method Bading, Multple Inherzance.
lamovative festures of Sonping Languages-Scopiag rules, Sring
and Patsern Masupultion, Data Types, Object Onentation
Concumency:- Threads, Synchroalzation.
Run-tume program Management- Virssal Machines, Late Binding
of Machine Code, Reflection, Symbobic Debugging, Performance
Asalysis

END SEMESTER EXAM
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Question Paper Pattern (End semester exam)

1. There will be FOUR parts in the question paper - A, B, C,D
2. PartA
a. Total marks : 40
b. TEN questions, each have 4 marks. covering all the SIX modules (THREE
questions from modules I & II: THREE questions from modules ITI & IV:
FOUR questions from modules V & VI).
All the TEN questions have to be answered.

. Total marks : 18

. THREE questions, each having 9 marks. One question is from module I;
one question is from module II: one question uniformly covers modules I &
IL

. Any TWO questions have to be answered.

. Each question can have maximum THREE subparts.

. Total marks : 18

. THREE questions, each having 9 marks. One question is from module III:
one question is from module IV: one question uniformly covers modules ITI
&IV,

. Any TWO questions have to be answered.

. Each question can have maximum THREE subparts.

. Total marks : 24
. THREE questions, each having 12 marks. One question is from module V:
one question is from module VI: one question uniformly covers modules V
& VL
c. Any TWO questions have to be answered.
d. Each question can have maximum THREE subparts.
. There will be AT LEAST 60% analytical/numerical questions in all possible
combinations of question choices.
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QUESTION BANK

MODULE I

QUESTIONS

What do you mean by Boxing and Unboxing?
Explain Lazy evaluation.

Explain Iterators.

Explain about the foll: storage allocation
mechanisms used

Discuss about Expression evaluation ordering with
examples

Explain tail recursive function

How a Case statement is internally implemented?
What are the different search strategies that can be
used?

MODULE 11
Distinguish between strict and loose name
equivalence.
Explain bit vector representation of sets
Describe iterative deepening with DFS.
Explain about Type checking.
Differentiate between structural equivalence and
named equivalence with examples
Describe the meaning of Type. Why C is not a
strongly typed language?
Write notes on Records.
Describe about Variant Records.
Differentiate between enumeration and subrange
data types.

MODULE 111

Explain abstraction.
Explain the subroutine calling sequence.
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Describe the various tasks performed by prolog
and epilog.

Differentiate static and dynamic link with suitable
examples.

Describe how to maintain the static chain during a
subroutine call.

Describe the purpose of stack pointer and frame
pointer registers.

Distinguish between formal and actual parameters.

Draw and explain the layout of stack frame.
Explain the parameter passing mechanisms.

MODULE IV

Explain the applications of functional
programming languages.

Describe the features of functional programming
languages.

Explain the concept of functional programming.

Write short note on Lambda calculus.

Describe the behavior of LISP/Scheme read-eval-
print loop.

Sketch the internal representation of LISP List:
(ABCD)
(A(BC)D(E(FG)))

MODULE V
Explain the distinction between private, public and
protected class members. What are the visibility
rules in C++.
Explain the importance of virtual methods for
object closures (or),What is the use of Vtable?.
Elaborate the characteristics of scripting languages.

List the principal ways in which scripting
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languages differ from conventional “systems”
languages.

Compare the approaches to object orientation taken
by

Perl 5,

PHP 5 and Javascript

Write notes on dynamic method binding in object
oriented programming

Explain data types supported by scripting
languages

Explain the features of any one scripting language.

Explain how pattern matching is done in scripting
languages..

Compare the numeric types of popular scripting
languages..

MODULE VI

Explain the language support/constructs needed for
thread implementation. Also explain thread
architecture

Explain the methods used for creating a new thread
of control in concurrent programming?

Explain about ‘Late binding of machine code’?

With a state diagram, explain states of a thread

Explain about symbolic debugging
How do binary and general semaphores differ?

Explain about symbolic debugging.
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APPENDIX 1

CONTENT BEYOND THE SYLLABUS

TOPIC PAGE NO:
Python programming paradigms 148

MODULE NOTES
MODULE -1

Introduction to Programming paradigms:

Programming paradigms are a way to classify programming languages based on their features.
Languages can be classified into multiple paradigms.

Common programming paradigms include:

Imperative which allows side effects,

e Procedural which groups code into functions(eg: C, FORTRAN, Pascal,
COBOL,BASIC, Ada etc)

e Object-oriented which  groups code together with the state the code
modifies.(eg:C++,C#, Java, Simula,Smalltalk)

Declarative which does not state the order in which operations execute,

e Functional which disallows side effects(eg: Lisp, Scheme, Haskell, Erlang,
ML,APL,Miranda,etc)

e Logic which has a particular style of execution model coupled to a particular style of
syntax and grammar(eg:Prolog)

Symbolic programming which has a particular style of syntax and grammar

1. Names
A name is a mnemonic character string used to represent something else. Names in most
languages are identifiers (alphanumeric tokens), though certain other symbols, such as + or
:=, can also be names.
Names allow us to refer to variables, constants, operations, types, and so on using symbolic
identifiers rather than low-level concepts like addresses.
Names are also essential in the context of a second meaning of the word abstraction.
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In this second meaning, abstraction is a process by which the programmer associates a name
with a potentially complicated program fragment, which can then be thought of in terms of
its purpose or function, rather than in terms of how that function is achieved.

By hiding irrelevant details, abstraction reduces conceptual complexity, making it possible
for the programmer to focus on a manageable subset of the program text at any particular
time.

Names are control abstractions and data abstractions for program

Subroutines are control abstractions: they allow the programmer to hide arbitrarily
complicated code behind a simple interface.

Classes are data abstractions: they allow the programmer to hide data representation details
behind a (comparatively) simple set of operations.

2. Scope
e A scope is the context within a computer program in which a variable name or other identifier

is valid and can be used, or within whicha declaration has effect.

e The scope of a binding is also known as the visibility of an entity.

e Static scope: Scoping follows the structure of the program. C is said to be statically scoped.

e Dynamic scope, where scoping follows the execution path.the languages, including APL,
Snobol, and early versions of Lisp, are dynamically scoped: their bindings depend on the
flow of execution at run time.

Example:
inti=1, /lglobal variable

void printdata()

cout << i <<endl;

}

int main ()

{

inti=2;
printdata();
return O;

¥

If static scoping used, the result will be 1

If dynamic scoping used, this would print out 2.

The lexical scope of a variable's definition is resolved by searching its containing block or
function, then if that fails searching the outer containing block, and so on.

Whereas with dynamic scope the calling function is searched, then the function which called that
calling functions, and so on, progressing up the call stack. Of course, in both rules, we first look
for a local definition of a variable.

CSE DEPARTMENT, NCERC PAMPADY




Most modern languages use lexical scoping for variables and functions, though dynamic scoping
is used in some languages, notably some dialects of Lisp, some "scripting” languages, and
some template languages.Perl 5 offers both lexical and dynamic scoping.

3. Binding Time
A binding is an association between two things, such as a name and the thing it names.
Binding time is the time at which a binding is created or, more generally, the time at which any
implementation decision is made to create a name < -> entity binding.
There are many different times at which decisions may be bound:

v' Language design time: the design of specific program constructs (syntax), primitive
types, and meaning (semantics).

v' Language implementation time: fixation of implementation constants such as numeric
precision, run-time memory sizes, max identifier name length, number and types of built-
in exceptions, etc.

Program writing time: Programmers, of course, choose algorithms, data structures,and
names.
Compile time: Compilers choose the mapping of high-level constructs to machinecode,
including the layout of statically defined data in memory.
Link time: the time at which multiple object codes (machine code files) and libraries are
combined into one executable
Load time: when the operating system loads the executable in memory
Run time: when a program executes

Language feature |Binding time

Syntax, e.g. i£ (a>0) b:=a; in C or
if a>0 then b:=a end if in Ada
Keywords. e.g. class in C++ and Java |Language design

[_Language design

Reserved words, e.g. main in C and

- [_Language design
writeln in Pascal g =

Meaning of operators. e.g. + (add) [Language design
Primitive types. e.g. float
and scruct in C

[Language design

Internal representation of literals,

e.g 3.1 and “foo BAr® [_Language implementation

The specific tyvpe of a variable in a

C or Pascal declaration Compile time

[Language design,
Storage allocation method for a variable |language implementation,
and/or compile time

Linking calls to static library routines,
e.g printf in C

Merging multiple object codes

into one executable

Loading executable in memory

and adjusting absolute addresses
Nonstatic allocation of space for
variable

Linker

Linker

[_oader (OS)

[Run time

The Effect of Binding Time
The compiler performs a process called binding when an object is assigned to an object variable.
The early binding (static binding) refers to compile time binding and late binding (dynamic
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https://en.wikipedia.org/wiki/Template_language

binding) refers to runtime binding. In general, early binding times are associated with greater
efficiency, while later binding times are associated with greater flexibility.
Binding lifetime: time between creation and destruction of binding to object.
o Example: A pointer variable is set to the address of an object
o Example: A formal argument is bound to an actual argument
Obiject lifetime: time between creation and destruction ofan object.

creation of binding to destruction of
binding to obhject binding to
object tefnporarily objTt

inwvisible i
! !

object | object |
création in destruction
mernory

Key events in object lifetime
o Object creation
Creation of bindings
References to variables, subroutines, types are made using bindings
Deactivation and reactivation of temporarily unusable bindings
Destruction of bindings
Destruction of objects

Bindings are temporarily invisible when code is executed where thebinding (name <-> object)
is out of scope

Memory leak: object never destroyed (binding to object may havebeen destroyed, rendering
access impossible)

Dangling reference: object destroyed before binding is destroyed

Garbage collection prevents these allocation/deallocation problems

4. Scope Rules

The textual region of the program in which a binding is active is its scope. In most modern
languages, the scope of a binding is determined statically, that is at compile time. A scope is the
body of a module, class, subroutine, or structured control flow statement, sometimes called a
block. In C family languages it would be delimited with {...} braces.

Statically scoped language: the scope of bindings is determined at compile time.
Dynamically scoped language: the scope of bindings is determined at run time.

=>» Static Scoping

The bindings between names and objects can be determined by examination of the program
text.
Scope rules of a program language define the scope of variables and subroutines, which is the
region of program text in which a name-to-object binding is usable.
- EarlyBasic:

CSE DEPARTMENT, NCERC PAMPADY




« all variables are global and visible everywhere.
- Fortran77:

« the scope of a local variable is limited to a subroutine;

o the scope of a globalvariable is the whole program text unless it is
hidden by a local variable declaration with thesame variable name.

- Algol60, Pascal, and Ada:

o these languages allow nested subroutines definitions and adopt the

closest nested scope rule with slight variations in implementation.
- C: one declares the variable static; Algol: one declares it own.

e A save-ed (static, own) variable has a lifetime that encompasses the
entire execution of the program. Instead of a logically separate object
for every invocation of the subroutine, the compiler creates a single
object that retains its value from one invocation of the subroutine to
the next.

=> Nested Subroutines

v The ability to nest subroutines inside each other, introduced in Algol 60, is a feature of
many modern languages, including Pascal, Ada, ML, Python, Scheme, Common Lisp, and
(to a limited extent) Fortran 90.

Other languages, including C and its descendants, allow classes or other scopes to nest.

But C based languages has no nested subroutines

In Algol-family languages. Algol-style nesting gives rise to the closest nested scope rule for
bindings from names to objects:

v" A name that is introduced in a declaration is known in the scope in
which it is declared, and in each internally nested scope, unless it is
hidden by another declaration of the same name in one or more
nested scopes.

To find the object corresponding to a given use of aname, we look
for a declaration with that name in the current, innermost scope.

If there is one, it defines the active binding for the name.
Otherwise, we look for a declaration in the immediately
surrounding scope.

We continue outward, examining successively surrounding scopes,
until we reach the outer nesting level of the program, where global
objects are declared.

v If no declaration is found at any level, then the program is in error.

In Pascal, a procedure is defined using the procedure keyword. The general form of a
procedure

In this below example, procedure Nested scopes P2 is called only by P1, and need not be
visible outside. It is therefore declared inside P1, limiting its scope (its region of visibility)
to the portion of the programshown here.

In a similar fashion, P4 is visible only within P1

P3 is visible only within P2

and F1 is visible only within P4.

Under the standard rules for nested scopes, F1 could call P2 .,
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and P4 could call F1.,

but P2 could not call F1.

Though they are hidden from the rest of the program, nested subroutines are able to access
the parameters and local variables (and other local objects) of the surrounding scope(s). In
our example, P3 can name (and modify) Al, X, and A2, in addition to A3.

Because P1 and F1 both declare local variables named X, the inner declaration hides the
outer one within a portion of its scope.

Uses of X in F1 refer to the inner X; uses of X in other regions of the code refer to the outer
X.

procedure P1(Al1:T1)

var X:real; | TO ﬁnd the ObJeCt
referenced by a given
name:

procedure P2(A2:T2);

procedure P3(A3:T3);

Beqin Look for a

(* body of P3: P3,A3,P2,A2,X of P1,P1,Al are visible *) declaration in the
end; ,

— current innermost
begin scope

(* body of P2: P3,P2,A2,X of P1,P1,Al are visible %) .
end; If there is none, look
procedize DA for a declaration in
function F1 (A5:T5):T6; the immediately
varEintegery surrounding scope,
begin etC.

(* body of F1: X of F1,F1,A5,P4,A4,P2,P]1,Al are visible *)
end;

begin
(* body of P4: F1,P4,A4,P2,X of P1,P1,Al are visible *)
end;

begin
(* body of P1: X of P1,P1,A1,P2,P4 are visible ¥)
end

Static Scope Implementation with static links

Scope rules are designed so that we can only refer to variables that are alive: the
variable must have been stored in the frame of a subroutine

If a variable is not in the local scope, we are sure there is a frame for the surrounding
scope somewhere below on the stack:

e The current subroutine can only be called when it was visible

e The current subroutine is visible only when the surrounding scope is

active

The simplest way in which to find the frames of surrounding scopes is to maintain a
static link in each frame that points to the “parent frame”.Each frame on the stack
contains a static link pointing tothe frame of the static parent.
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o Example static links.

Nesting Stack fremes Subroutines C and D are declared nested in B.
A B is static parent of C and D.
B and E are nested in A.

A is static parent of B and E.

1 static link The fp(frame pointer) points to the frame at the

C

D top of the stack.

static link 7 The static link in the frame points to the frame
B the static parent.

static Tink — If a subroutine is declared at the outermost

— Culls nesting level of the program, then its frame will

A cellsE E have a null static link at run time. That is, A.
static link —

E cullsB
B callsD
D calls C

A

Static Chains
How do we access non-local (global) objects?
The static links form a static chain, which is a linked listof static parent frames
When a subroutine at nesting level j has a reference to an object declared in a static parent at
the surrounding scope nested at level k, then j-k static links forms a static chain that is
traversed to get to the frame containing theobject.
The compiler generates code to make these traversals over frames to reach non-local objects

o Subroutine A is at nesting levell and C at
nesting level 3

o When C accesses an object of A, 2 static
links are traversed to get to A's frame
thatcontains that object

Out of Scope
o Non-local objects can be hidden by local name-to-object bindings and the scope is said to

have a “hole” in which the non-local binding is temporarily inactive but notdestroyed.
o Some languages, notably Ada and C++ use qualifiers or scope resolution operators to access
non-local objectsthat are hidden
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rocedure P1; ) )
sar X:real: m P2 is nested in P1

procedure P2; m P1 has a local variable X

var X:integer m P2 has a local variable X that

begin . o . hides X in P1

(%25 ok BR 28 RAdoeh =) When P2 is called, no extra
code is executed to inactivate
the binding of X to P1

end;
begin

end

=> Dynamic Scoping
Scope rule: the "current” binding for a given name is the one encountered most recently
during execution.
Typically adopted in (early) functional languages that are interpreted
Languages with Dynamic scoping:
= APL, Snobol, TEX, early versions of Lisp, Perl
Perl v5 allows you to choose scope method for each variableseparately
With dynamic scope:
= Name-to-object bindings cannot be determined by a compiler in general
= Easy for interpreter to look up name-to-object binding in a stack
ofdeclarations
Sometimes useful:
= Unix environment variables have dynamic scope
= |t makes it very easy for an interpreter to look up the meaning of a name
= All that is required is a stack of declarations.
Generally considered to be "a bad programming language feature"
= Hard to keep track of active bindings when reading a program text
= Most languages are now compiled, or a compiler/interpreter mix
= Unfortunately, this simple implementation has a very high run-time cost, and
experience indicates that dynamic scoping makes programs harder to
understand.
The modern consensus seems to be that dynamic scoping is usually a bad idea.
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. n:integer — — global declaration

. procedure first
n:=1

. procedure second
n :integer — — local declaration
first()

.on:i=2

. if read_integer() > 0
second()

. else
first()

. write_integer(n)

Static versus dynamic scoping.

Program output depends on both scope rules and,
in the case of dynamic scoping, a value read at run time.

If static scoping is in effect, the above program Static vs. dynamic scoping

»= Printsal.
If dynamic scoping is in effect, the output depends on the value read at line 8 at run time:

= if the input is positive, the program prints a 2;

= if the input is negative or 0.,, the program prints a 1.
Why the difference? At issue is whether the assignment to the variablen at line 3 refers to the
global variable declared at line 1 or to the local variabledeclared at line 5.
Static scope rulesrequire that the reference resolve to the closestlexically enclosing
declaration, namely the global n. Procedure first changes n tol, and line 12 prints this value.
Dynamic scope rules, on the other hand, requirethat we choose the most recent, active
binding for n at run time.
PROBLEMS WITH DYNAMIC SCOPING
Run-time errors with dynamic scoping:With dynamic scoping, errors associated with the
referencing environment maynot be detected until run time.
For example, the declaration of local variable max_score in procedure foo accidentally
redefines a global variable used by function scaled_score, which is then called from foo.
Since the global max_score is an integer, while the local max_score is a floating-point
number, dynamic semantic checks in at least some languages will result in a type clash
message at run time.
If the local max_score had been an integer, no error would have been detected, but the
program would almost certainly have produced incorrect results.
This sort of error can be very hard to find.
In this example, function scaled_score probably does not do what the programmer intended:
with dynamic scoping, max_score in scaled_score is bound to foo's local variable max_score
after foo calls scaled_score, which was the most recent bindingduring execution.
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max_score : integer ——maximum possible score

function scaled_score(raw_score : integer) : real
return raw_score / max_score * 100

procedure foo
max_score : real := 0 — - highest percentage seen so far

foreach student in class
student.percent := scaled_score(student.points)
if student.percent >> max_score
max_score ;= student.percent

The problem with dynamic scoping.

Procedure scaled score probably does not do what the programmer
intended when dynamic scope rules allow procedure foo to change
the meaning of max_score.

= Implementing Scope

o To keep track of the names in a statically scoped program, a compiler relies on a

data abstraction called a symbol table. In essence, the symbol table is a dictionary: it
maps names to the information the compiler knows about them.
In a language with dynamic scoping, an interpreter (or the output of a compiler)
must perform operations analogous to symbol table insert and lookup at runtime. In
principle, any organization used for a symbol table in a compiler could be used to
track name-to-object bindings in an interpreter, and vice versa. In practice,
implementations of dynamic scoping tend to adopt one of two specific organizations:
an association list or a central reference table.

5. Storage Management

Objects (program data and code) have to be stored in memory during their lifetime. Object
lifetimes generally correspond to one of three principal storage allocation mechanisms, used to
manage the object’s space. They are static allocation, stack allocation, and heap allocation.
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Upper addr

Program code is at the bottom
of the memory region (code
section)

stack

The code section is protected

' from run-time modification by

the OS

heap Static data objects are stored
in the static region

Stack grows downward
Heap grows upward

static data

Virtual memory address space

code

FIGURE: TYPICAL PROGRAM AND DATA LAYOUT IN MEMORY

(1) STATIC ALLOCATION

Static Objects have an absolute storage addressthat is retained throughout the execution of the
program. (Absolute addresses are also called real addresses and machine addresses. A
fixed address in memory).They are often allocated in protected, read-only memory. So that any
attempt to write to them will cause a processor interrupt, allowing the operating system to
announce a run-time error.Advantage of statically allocated object is the fast access due to
absolute addressing of the object.

Examples of static objects are:

v Global variables are static objects

v Program code is statically allocated in most implementations of imperative languages.

v Variables that are local to single subroutine, but retain their values from one invocation to
the next; their space is statically allocated.
Numeric and string valued constants can be allocated statically.
Run time tables produced by compilers (these tables are used for support of debugging, type
checking, garbage collection, exception handling and other purposes) are statically
allocated.
static local variables in C
In earlier versions of FORTRAN, recursion was not supported.As a result, there can never
be more than one invocation of subroutine active. Thus the compiler may choose to use
static allocation for local variables in that language. In languages with recursion, we can’t
use static allocation of local variables.
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(2) STACK ALLOCATION

Static allocation does not work for local variables in potentially recursive subroutines. Every
(recursive) subroutine call must haveseparate instantiations of local variables. So we use stack
allocation.Stack Objectsare allocated in last-in first-out(LIFO) order, usually in conjunction
with subroutine calls and returns.
v' Each instance of a subroutine at run time has aframeon the run-time stack (also
called activation record).
v' Compiler generates subroutine calling sequence to setup frame, call the routine, and to
destroy the frame afterwards.
Frame layouts vary between languages and implementations
A frame pointer (fp) points to the frame of the currently active subroutine at run time
(always topmost frame on stack)
Subroutine arguments, local variables, and return values are accessed by constant address
offsets from fp
The stack pointer (sp) points to free space on the stack.
Even in a language without recursion, it can be advantageous to use a stack for local
variables, rather than allocate them statically.

(growth) ff«— sp (stack pointer)
Subroutine A |
Temporaries

Local vars

Bookkeeping
Return address main()
Arguments {

<« fp (frame pointer) Example C program

AO;

Subroutine B
Temporaries 3
Local vars ke
Bookkeeping L
[Return address B();
Arguments Iy %)=
Subroutine A
Temporaries E{;() .
 Local vars AQ);
Bookkeeping o
IReturn address b
Arguments main calls A,
A calls B.

B calls A

Main program
Temporaries
Local vars

Bookkeeping
Return address
Arguments

FIGURE: STACK BASED ALLOCATION OF SPACE FOR
SUBROUTINES

(3) HEAP ALLOCATION

A heap is a region of storage in which sub-blocks can be allocated and de-allocated at arbitrary times.
Heaps are required for the dynamically allocated pieces of linked data structures, and for objects like
fully general character strings, lists, and sets, whose size may change as a result of an assignment
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statement or other update operation.
Strategies to manage space in a heap

@)

@)

The principal concerns are speed and space, and as usual there are tradeoffs between
them.
Space concerns can be further subdivided into issues of internal and external

fragmentation

Heap

I N N W

Allocation request

Figure :  Fragmentation. The shaded blocks are in use;the clear blocks are free. Cross-hatched
space at the ends of in-use blocks represents internal fragmentation. The discontiguous free blocks
indicate external fragmentation. While there is more than enough total free space remaining tc
satisfy an allocation request of the illustrated size, no single remaining block is large enough.

Internal fragmentation:
It occurs when a storage-management algorithm allocates a block that is larger than required to
hold a given object. The extra space is then unused.

External fragmentation:

It occurs when the blocks that have been assigned to active objects are scattered through the heap
in such a way that the remaining, unused space is composed of multiple blocks: there may be
quite a lot of free space, but no one piece of it may be large enough to satisfy some future
request.

Many storage-management algorithms maintain a single linked list—the free list—of heap blocks
not currently in use.

o

o
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Initially the list consists of a single block comprising the entire heap.

At each allocation request the algorithm searches the list for a block of appropriate size.
With a first fit algorithm we select the first block on the list that is large enough to satisfy
the request.

With a best fit algorithm we search the entire list to find the smallest block that is large
enough to satisfy the request.

In either case, if the chosen block is significantly larger than required, then we divide it in
two and return the unneeded portion to the free list as a smaller block. (If the unneeded
portion is below some minimum threshold in size, we may leave it in the allocated block
as internal fragmentation.)

When a block is de-allocated and returned to the free list, we check to see whether either
or both of the physically adjacent blocks are free; if so, we coalesce them.

Intuitively, one would expect a best fit algorithm to do a better job of reserving large
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blocks for large requests. At the same time, it has higher allocation cost than a first fit
algorithm, because it must always search the entire list, and it tends to result in a larger
number of very small “left-over” blocks.

Which approach—first fit or best fit—results in lower external fragmentation depends on
the distribution of size requests.

In any algorithm that maintains a single free list, the cost of allocation is linear in the number of free

blocks. To reduce this cost to a constant, some storage management algorithms maintain separate

free lists for blocks of different sizes.

v' Each request is rounded up to the next standard size (at the cost of internal fragmentation) and
allocated from the appropriate list.

v" In effect, the heap is divided into “pools,” one for each standard size.

v The division may be static or dynamic.

Two common mechanisms for dynamic pool adjustment are known as the buddy system and the
Fibonacci heap.
v"In the buddy system, the standard block sizes are powers of two. If a block of size 2¥ is needed,

but none is available, a block of size 2¥*1 s split in two. One of the halves is used to satisfy the
request; the other is placed on the k" free list. When a block is deallocated, it is coalesced with
its “buddy”—the other half of the split that created it—if that buddy is free.
Fibonacci heaps are similar, but use Fibonacci numbers for the standard sizes, instead of powers
of two. The algorithm is slightly more complex, but leads to slightly lower internal
fragmentation, because the Fibonacci sequence grows more slowly than2k.
The problem with external fragmentation is that the ability of the heap to satisfy requests may
degrade over time. To eliminate external fragmentation, we must be prepared to compactthe
heap, by moving already-allocated blocks. This task is complicated by the need to find and
update all outstanding references to a block that is being moved.

What happens when the user no longer needs the heap-allocated space?

v" Manual de-allocation: The user issues a command like free or delete to return the space (C,
Pascal). When a block (including any internal wasted space) is returned, it is coalesced, if
possible, with any adjacent free blocks.

Automatic de-allocation via garbage collection (Java, C#, Scheme, ML, Perl).
Semi-automatic de-allocation using destructors (C++, Ada). The destructor is called
automatically by the system, but the programmer writes the destructor code.

Poorly done manual de-allocation is a common programming error.

o Ifan object is de-allocated and subsequently used, we get a dangling reference.
o Ifan object is never de-allocated, we get a memory leak.

We can run out of heap space for at least three different reasons.

= What if there is not enough free space in total for the new request and all the
currently allocated space IS needed?
Solution: Abort.
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=  What if we have several, non-contiguous free blocks, none of which are big
enough for the new request, but in total they are big enough?
This is called external fragmentation since the wasted space is outside (external
to) all allocated blocks.
Solution: Compactify.
What if some of the allocated blocks are no longer accessible by the user, but
haven't been returned?
Solution: Garbage Collection
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2GARBAGE COLLECTION
= Agarbage collection algorithm is one that automatically de-allocates heap
storage when it is no longer needed.
There are two aspects to garbage collection: first, determining automatically
what portions of heap allocated storage will (definitely) not be used in the
future, and second making this unneeded storage available for reuse.

Disadvantages of Garbage Collection:

= Extra burden for the language implementer.

= When the garbage collector is running, machine resources are being consumed.

= For some programs the garbage collection overhead can be a significant portion
of the total execution time.
The programmer can easily tell when the storage is no longer needed, it is
normally much quicker for the programmer to free it manually than to have a
garbage collector do it.

6. Binding of Referencing Environments

What is Referencing Environment?

o Itis the collection of all names that are visible in the statement.

o In a static-scoped language, referencing Environments is the local variables plus all of
the visible variables in all of the enclosing scopes.

The referencing environment of a statement is needed while that statement is being
compiled, so code and data structures can be created to allow references to non-local
variables in both static and dynamic scoped languages.

A subprogram is active if its execution has begun but has not yet terminated.

In a dynamic-scoped language, the referencing environment is the local variables plus
all visible variables in all active subprograms.
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Ex, Ada, Static-scoped language
procedure Example is
A, B : Integer;

procedure Subl is
X, ¥ : Integer;
begin -- of Subl

end -- of Subl
procedure Sub2 is
X : Integer;

procedure Sub3 is
X : Integer;
begin -- of Sub3

end; == of sSub3
begin -- of Sub2

end; { Sub2}
begin

€ 4

end; {Example}

= The referencing environments of the indicated program points are as
follows:

Point Referencing Environment

1 Xand Y of Sub1, A & B of Example

2 X of Sub3, (X of Sub2 is hidden), A and B of Example
3 X of Sub2, A and B of Example

4 A and B of Example
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Ex, dynamic-scoped language

void sub1( )
{

int a, b;

€1
} /* end of sub1 */
void sub2( )

intb, c;
€2
sub1;
} /* end of sub2 */
void main ()

intc, d;
€3
sub2( );

} /* end of main */

The referencing environments of the indicated program points are as
follows:

Point Referencing Environment

1 a and b of sub1, c of sub2, d of main
2 b and ¢ of sub2, d of main

3 c and d of main

Binding of Referencing Environment:

There are mainly two types of binding of referencing environment
= Deep Binding
= Shallow Binding
Deep/shallow binding makes sense only when a procedure can be passed as an argument to a
function.
o Deep binding
o Binds the environment at the time a procedure is passed as an argument.
o Inthe Example program: f2(f3);
o It is the earlybinding (static or lexical) of the referencing environment of a
subroutine.
The need for deep binding is sometimes referred to as the funarg problem in Lisp

o Shallow binding
o Binds the environment at the time a procedure is actually called.
o Inthe Example program:f3 ()); function call.
o Itis the late binding (dynamic) of referencing environment of a subroutine.

CSE DEPARTMENT, NCERC PAMPADY




Deep binding
(static)

Example program

Shallow
(dynamic)

binding

Point (1)
x of f1()=>10

Point (2)
x of f2()>6

(x of f1()hidden)

Point (3)
x of f1()—>10

function f1()
{

var x = 10;

function f2(fx)
{

var x;
X =6;

function f3()
{

Point (1)
x of f1()->10

Point (2)
x of f2()>6

(x of fL()hidden)

Point (3)
x of f2()>6

(x of f1()hidden)

print x;
; Print x=6

Print x=10 %

f2(f3);
3

o In case of deep binding,f3() gets the environment of f1() and prints the value of x as 10 which
is local variable of f1( ).In case of shallow binding, f3() is called in f2( ) and hence gets the
environment of f2( )and prints the value of x as 6 which is local to f2().

These Binding rules are irrelevant in languages like C (which has no nested subroutines),
Modula-2 (which allow only outermost subroutines to be passed as parameters), PL/l and Ada
(which do not permit subroutines to be passed as parameters at all.

7. Expression Evaluation

An expression consists of
= Asimple object, e.g. number or variable
= Anoperator (eg:+ )applied to a collection of operands(a,b,..) which is
expression.
a + b —>an expression
Or function(eg:addition( )) applied to a collection of arguments(a,b) is an
expression.
addition(a,b)—>an expression.
Common syntactic forms for operators:
= Function call notation, e.g.addnum(A, B, C), where A, B, and C are
expressions

= Infix notation[a op b] for binary operators, e.g. A+ B
= Prefix notation[op a ] for unary operators, e.g. -A
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Postfix notation [a op] for unary operators, e.g. i++

CambridgePolish(prefix)notation, (op a b).,
e.g. (* (+ 13) 2) in Lisp, meaning is =(1+3)*2=8.
It places the function name inside the parentheses.

Mixfix notation(multiword infix notation) in smalltalk

In Smalltalk to send a message to myBox graphical object:

myBox displayOn: myScreen at: 100@50 ,

where displayOn: and at:are written infix with arguments mybox, myScreen,
and 100@50(a pixel location)

Conditional expressions: In Algol
a:=if b <> 0 then a/b else 0;
In algol (if.....then....else) is a three operand infix operator.
The equivalent operator in C is :
a=b!=0?a/b:0;

Most imperative languages (procedural,object oriented) use infix notation for binary operators and
prefix notation for unary operators. Lisp(functional) uses prefix notation for all functions. Smalltalk
use infix notation for all functions.

Expression Evaluation Ordering: Precedence and Associativity

= The use of infix, prefix, and postfix notation leads to ambiguity as to what is an
operand of what, e.g. a+b*c**d**e/f in Fortran, should this grouped as
((((a+b) *c)**d)**e) / f or
a+ (((b*c)**d)**(eff)) or
a+ ((b *(c**(d**e)))/f) or some other option?
In Fortran, the answer is the last of the options shown.

= The choice among alternative evaluation orders dependsonprecedence and
associativity of operators.
= Operator precedence: higher operator precedence means that a
collection of) operator(s) group more tightly in an expression than
operators of lower precedence.
Operator associativity: determines evaluation order of operators of the
same precedence
= |eft associative: operators are evaluated left-to-right (common)
= right associative: operators are evaluated right-to-left
(Fortran power operator **, C assignment operator = and unary
minus)
= non-associative: requires parenthesis when composed
(Ada power operator **)
= Pascal’s flat precedence levels is a design mistake
= if A<B and C<D then s read as if A<(B and C)<D then results in static
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semantic error. Most languages avoid this problem by giving arithmetic
operators higher precedence than relational (comparison) operators,
which in turn have
higherprecedencethanthelogicaloperators.Notableexceptionsinclude APL
and Smalltalk, in which all operators are of equal precedence;
parentheses must be used to specify grouping. Below table show
precedence and associativity of operators in C

Precedence and Associativity of Operators

Precdence Group Operators Associativity
(Highest to Lowest )

(param) subscript etc., Ol L2R
Unary operators -+ ! ~++ -~ (type) * & sizeof R=2L
Multiplicative LR
Additive L2 R
Bitwise shift L2R
Relational L2R
Equality ! L2R
Bitwise AND 4 LR
Bitwise exclusive OR L2>R
Bitwise OR L2R
Logical AND (& L2R
Logical OR L2R
Conditional 2 R2L
Assignment /= %= &="= R2L

|= <<= >>=
Comma : L2R

Assignments

o Fundamental difference between imperative and functional languages
= Imperative Languages: "computing by means of side effects” i.e. computation
is an ordered series of changes to values of variables in memory and statement
ordering is influenced by run-time testing values of variables
Expressions in functional language are referentially transparent: All values used
and produced depend on the referencing environment of the expression
and not on the evaluation time of the expression
A function is idempotentin a functional language:Always returns the same
value given the same arguments because of the absence of side-effects
o Assignment a:=b
= Left-hand side ‘a’ of the assignment is a location, called I-value which is an
expression that should denote a location.Right-hand side ‘b’ of the assignment
is a value, called r-value which is an expression
Languages that adopt value model of variables copy values: Ada, Pascal, C,
C++ copy the value of 'b’ into the location of ‘a’
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= Languages that adopt reference model of variables copy references: Algol
68,Clu,Lisp/Scheme,ML,Haskell, and smalltalk.Clu copies the reference
of b into aand both aand b refer to the same object. Here variable is not a
named container for a value; rather it is named reference to a value.

= Java uses value model for built-in types and reference model for classes

The following fragment of code is syntactically vahd
in both Pascal and Clu:

b:=2;

c:=h;

ar=h+c;

Pascal(Value Model) & Clu(Reference Model)

[&]
0

o Variable initialization
= Implicit: e.g. 0 or NaN (not a number) is assigned by default
= Explicit: by programmer (more efficient than using an explicit assignment,
e.g. int i=1; declares i and initializes it to 1 in C)
o Multiway assignments in Clu, ML, and Perl
= ab:=c,dassigns c to aand d to b simultaneously,
e.g.a,b :=b,a swaps awith b
= ab:=1assigns1tobothaandb

—_
_—

Evaluation Ordering within Expressions

o Precedence and associativity define rules for structuring expressions
But do not define operand evaluation order.
Example:
= Expression a-f(b)-c*d is structured as (a-f(b))-(c*d) by compiler,
= but either (a-f(b)) or (c*d) can be evaluated first at run-time
= What is the evaluation order of arguments in subroutine calls with multiple
arguments?
o Two main reasons why the order can be important:
= Side effects: e.g. if f(b) above modifiesd (i.e. f(b) has a side effect) the
expression value will depend on the operand evaluation order
= Code improvement: compilers rearrange expressions to maximize efficiency
= Improve memory loads:
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a:=BJ[i]; load a from memory
c:=2*a+3*d; compute 3*d first, because loads are slow.
because waiting for a to arrive in processor

= Common sub-expression elimination:

a:=b+c;

d:=c+e+b; rearranged as d:=b+c+e, it can be rewritten into d:=a+e

= Register allocation: rearranging operand evaluation can decrease the

number of processor registers used for temporary values

Expression Reordering Problems

o Rearranging expressions may lead to arithmetic overflow or different floating point
results
= Assume b, d, and c are very large positive integers, then if b-c+d is rearranged
into (b+d)-c arithmetic overflow occurs
Floating point value of b-c+d may differ from b+d-c
Most programming languages will not rearrange expressions when parenthesis
are used, e.g. write (b-c)+d to avoid problems
Java: expressions evaluation is always left to right and overflow is always detected
Pascal: expression evaluation is unspecified and overflows are always detected
C anc C++: expression evaluation is unspecified and overflow detection is
implementation dependent.

Short-Circuit Evaluation

Boolean expressions provide a special and important opportunity for code
improvement and increased readability.

Short-circuit evaluation of Boolean expressions means that computations are skipped
when logical result of a Boolean operator can be determined from the evaluation of
one operand.

Example :

v' Consider the expression (a<b) and (b<c);If a > b, there is really no point
in checking to see whether b < c. we know that the overall expression
must be false.

v In the expression (a>b) or (b>c); If a > b, there is no point in checking
to see whether b >c. we know that the overall expression must be true.

C, C++, and Java use conditional and/or operators: && and ||

o Ifaina&&b evaluates to false, b is not evaluated

o Ifainallb evaluates to true, b is not evaluated

o Useful to increase program efficiency(save time),

e.g.if (unlikely_condition&& expensive_condition()) ...
Pascal does not use short-circuit evaluation.
In Ada,“and/or” uses “then” keyword,
e.g.: (a<b) and then (b<c);
(a>b) or else (b>c);

Ada, C, and C++ also have regular Boolean operators
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Short circuiting is not necessarily as attractive for situations in which a Boolean sub
expression can cause a side effect.

Delayed or Lazy Evaluation:Short circuiting can be considered as a delayed or lazy
evaluation because the operands are passed unevaluated. Internally, the operator
evaluates the first operand in any case, the second only when needed.

8. Structured and Unstructured Flow
Unstructured flow: the use of goto statements and statement labels to obtain control
flow

= Merit or evil? Generally considered bad, but sometimes useful for jumping
out of nested loops and for programming errors and exceptions
Java has no goto statement
Example:In early FORTRAN,
if(A.It.B) goto

Structured flow:
= Sequencing: the subsequent execution of a list of statements in that order
= Selection: if-then-else statements and switch or case-statements
= |teration: for and while loop statements
= Subroutine calls and recursion
All of which promotes structured programming

9. Sequencing
A list of statements in a program text is executed in top-down order

A compound statement is a delimited list of statements
= A compound statement is a block when it includes variable declarations
= C, C++, and Java use { and } to delimit a block
= Pascal and Modula use begin ... end
= Ada uses declare ... begin ... end
C, C++, and Java: expressions can be used where statements can appear
In pure functional languages, sequencing is impossible (and not desired!)

10. Selection
Forms of if-then-else selection statements:

«C and C++ EBNF syntax:
if (<expr>) <stmt> [else <stmt>]
Condition is integer-valued expression. When it evaluates to O, the else-
clause statement is executed otherwise the then-clause statement is executed. If
more than one statement is used in a clause, grouping with { and } is required

= Java syntax is like C/C++, but condition is Boolean type

= Ada syntax allows use of multiple elsif's to define nested conditions:
if <cond> then
<statements>
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elsif <cond> then
<statements>

elsif <cond> then
<statements>

else
<statements>
end if
= |n Modula-2,
IF a=b THEN....
ELSIF a=c THEN....
ELSIF a=d THEN....
ELSE....
END
In Lisp,(equivalent to Modula-2)
(cond
(=ab)
()
(Fac)
()
(Fad)
()

(--))
In algol 60,
if condition then statements
elseif condition then statements
elseif condition then statements

(T

else statements

e Case/switch statements are different from if-then-else statements in that an expression
can be tested against multiple constants to select statement(s) in one of the arms of

the case statement:
= C, C++, and Java syntax:

switch (<expr>)

{

case <const>: <statements> break;
case <const>: <statements> break;

default: <statements>
}
break is necessary to transfer control at the end of an arm to the end of
the switch statement
= |n modula-2,
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CASE expr OF

1: clause_A
2,7:clause_B Arms of the case statement
3..5:clause_C
10:clause_D
ELSE clause E
END

Labels

e The use of a switch statement is much more efficient compared to nested if-then-
else statements

11. Iteration
e Enumeration-controlledloops repeat a collection of statements a number of times,
where in each iteration a loop index variable takes the next value of a set of values
specified at the beginning of the loop
e Logically-controlledloops repeat a collection of statements until some Boolean
condition changes value in the loop
i. Pre-test loops test condition at the begin of each iteration
Ii. Post-test loops test condition at the end of each iteration
iii. Mid-test loops allow structured exits from within loop with exit conditions

Enumeration-Controlled Loops

e Enumeration controlled iteration originated with the do loop of FORTRAN 1.
e Similar mechanisms have been adopted in some form by almost every subsequent
language, but syntax and semantics vary widely.
Fortran-90:

do i=1,10,2

Variable i is called index of the loop.

The expression that follow the equals sign are i’s initial value, its bound, and
the step size.

The body of the loop executes 5 times,with | set to 1,3,5,7,9 in successive
iterations.

Algol-60 combines logical conditions:
o Difficult to understand and too many forms that behave the same:

fori = 1, 3, 5, 7, 9do
for i = 1 step 2 until 10 do ...
fori:=1,i+2whilei<10do ...
Pascal has simple design:
e for <id> := <expr> to <expr> do <stmt>
for <id> := <expr> downto <expr> do <stmt>
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e Can iterate over any discrete type, e.g. integers, chars, elements of a set
¢ Index variable cannot be assigned and its terminal value is undefined
Ada for loop is much like Pascal's:
o for <id> in <expr>..<expr> loop
<statements>
end loop

for <id>in reverse <expr>..<expr> loop
<statements>
end loop

e Index variable has a local scope in loop body, cannot be assigned, and is not accessible
outside of the loop
C, C++, and Java:

e do not have enumeration-controlled loops although the logically-
controlled for statement can be used to create an enumeration-controlled loop:
for (i=1;i<=n;i++)
{
.}
Iterates i from 1 to n by testing i <= n before each iteration and updating i by 1 after
each iteration
Programmer's responsibility to modify, or not to modify, i and n in loop body
C++ and Java also allow local scope for index variable, for example

for (inti=1;i<=n;it++)

{
.}

Problems With Enumeration-Controlled L oops

CIC++:
e This C program never terminates:
#include <limits.h>
main()
{inti;
for (i ; i INT_MAX; i++)

}

because the value of i overflows (INT_MAX is the maximum positive value int can
hold) after the iteration with i==INT_MAX and i becomes a large negative integer

In C/C++ it is easy to make a mistake by placing a ; at the end of
a while or for statement, e.g. the following loop never terminates:

[ = 0;
while (i < 10);
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{
i++:
¥

The C/C++ overflow problem is avoided by calculating the number of iterations in
advance

However, for REAL typed index variables an exception is raised when overflow
occurs
Pascal and Ada:

e Can only specify step size 1 and -1
e Pascal and Ada can avoid overflow problem

Logically-Controlled Pretest Loops

Logically-controlled pretest loops test an exit condition before each loop iteration
Not available Fortran-77 (1)
Pascal:

while <cond>

do <stmt>

where the condition is a Boolean expression and the loop will terminate when
the condition is false. Multiple statements need to be enclosed in begin and end
C, C++:

while (<expr>)
<stmt>
where the loop will terminate when expression evaluates to 0 and multiple
statements need to be enclosed in { and }

e Javais like C++, but condition is Boolean expression

Logically-Controlled Posttest Loops

Logically-controlled posttest loops test an exit condition after each loop iteration
Not available in Fortran-77 (1)
Pascal:

repeat <stmt> [; <stmt>]* until <cond>

where the condition is a Boolean expression and the loop will terminate when
the condition is true
C, C++:
do <stmt> while (<expr>)
where the loop will terminate when the expression evaluates to 0 and multiple
statements need to be enclosed in {and }
e Javais like C++, but condition is a Boolean expression

Logically-Controlled Midtest L oops
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e Logically-controlled midtest loops test exit conditions within the loop
e Ada:
= loop
<statements>
exit when <cond>;
<statements>
exit when <cond>;
<statements>

end loop
= Also allows exit of outer loops using labels:
outer: loop

foriin 1..n loop

exit outer when cond:;

end loop;
end outer loop;
C, C++:
= Use break statement to exit loops
= Use continue to jump to beginning of loop to start next iteration
Java is like C++, but combines Ada's loop label idea to allow jumps to outer loops
12. Recursion
Iteration and recursion are equally powerful: iteration can be expressed by recursion
and vice versa
Recursion can be less efficient, but most compilers for functional languages will
optimize recursion and are often able to replace it with iterations
Recursion can be more elegant to use to solve a problem that is recursively defined
e The GCD function is mathematically defined by

O

- a

gcd(allb,b)
gcd(a,blla)

int gcd(int a, int b)

{

if (a==Db) return g;
else if (a>b) return gcd(a-b,
else return gcd(a,
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}

Tail Recursive Functions

Tail recursive functions are functions in which no computations follow a recursive call
in the function

gcd example recursively calls gcd without any additional computations after the calls
A recursive call could in principle reuse the subroutine's frame on the run-time stack
and avoid deallocation of old frame and allocation of new frame

This observation is the key idea to tail-recursion optimization in which a compiler
replaces recursive calls by jumps to the beginning of the function
= For the gcd example, a good compiler will optimize the function into:
int gcd(int a, int b)

if (a==Db) return a;
else if (a>b) a-b; goto start;
else { b b-a; goto start; }
}
which is just as efficient as the iterative implementation of gcd:
int gcd(int a, int b)
{ while (a!=b)
if (a>b) a-b;
elseb b-a;
return a;

}

Continuation-Passing-Style:Even functions that are not tail-recursive can be
optimized by compilers for functional languages by using continuation-passing
style:With each recursive call an argument is included in the call that is a reference
(continuation function) to the remaining work.The remaining work will be done by the
recursively called function, not after the call, so the function appears to be tail-
recursive

13. Non-determinacy
Our final category of control flow is non-determinacy.
A nondeterministic constructison is in which the choice between alternatives
(i.e.,between control paths) is deliberately unspecified.
We have already seen examples of non-determinacy in the evaluation of expressions in
most languages, operator or subroutine arguments may be evaluated in any order.
Some languages, notably Algol68 and various concurrent languages,provide more
extensive non-deterministic mechanisms,which cover statements as well.
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MODULE -2

Data Types

Most programming languages include a notion of type for expressionsand/or objects.
Two principal purposes of types.

1.Operations that leveragetype information- Types provide implicit context for many operations,
so that the programmerdoes not have to specify that context explicitly.

In C, for instance, the expression a + b will use integer addition if a andb are of integer type; it
will usefloating-point addition if a and b are of double (floating-point) type.

2. Errors captured by typeinformation - Types limit the set of operations that may be performed
in a semanticallyvalid program.

They prevent the programmer from adding a character and arecord, for example, or from taking
the arctangent of a set, or passing a fileas a parameter to a subroutine that expects an integer.

2.1 TYPE SYSTEMS

Computer hardware can interpret bits in memory in several different ways: asinstructions,
addresses, characters, and integer and floating-point numbers ofvarious lengths.

1. Assemblylanguages reflect this lack of typing.

2. High-level languages, on the other hand, almostalways associate types with values, to provide
the contextual information anderror checking.

A type system consists of
(1) a mechanism to define types andassociate them with certain language constructs,and
(2) a set of rules for typeequivalence, type compatibility, and type inference.
i. The constructs that must havetypes are precisely those that have values, or that can refer to
objects that have
values. These constructs include:

a)named constants, literal constants

b) variables,

¢) record fields,

d) parameters,and

e) subroutines.
ii. Type equivalence rules determinewhen the types of two values are the same.
iii. Type compatibility rules determinewhen a value of a given type can be used in a given
context.
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iv. Type inference rulesdefine the type of an expression based on the types of its constituent parts
or
(sometimes) the surrounding context.

2.1.1 Type Checking

Type checking is the process of ensuring that a program obeys the language’s typecompatibility
rules.

1. A violation of the rules is known as a type clash.

2. A language issaid to be strongly typed if it prohibits, in a way that the language
implementation

can enforce, the application of any operation to any object that is not intendedto support
thatoperation.

3. A language is said to be statically typed if it is stronglytyped and type checking can be
performed at compile time.

Examples:

1. Ada is strongly typed, and for the most part statically typed(certain type constraints must be
checked at run time).

2. A Pascal implementationcan also do most of its type checking at compile time, though the
language is not

quite strongly typed: untagged variant records are its only loophole.

3. C89 is significantly more strongly typed than its predecessordialects, but still significantly less
strongly typed than Pascal.

4. Implementations of Crarely check anything at run time.

5. Dynamic (run-time) type checking is a form of late binding, and tends to befound in languages
that delay other issues until run time as well. Lisp and Smalltalkare dynamically (though
strongly) typed. Most scripting languages are alsodynamically typed; some (e.g., Python and
Ruby) are strongly typed. Languageswith dynamic scoping are generally dynamically typed (or
not typed at all): if thecompiler can’t identify the object to which a name refers, it usually can’t
determinethe type of the object either.

2.1.2 Polymorphism

Polymorphism allows a single body of code to work with objects ofmultiple types.

1. It may or may not imply the need for run-time type checking.

2. Only at run time does the language implementation check to see that the objectsactually
implement the requested operations.

3. Types of objects can bethought of as implied (unspecified) parameters, dynamic typing is said
to support

implicit parametric polymorphism.

4. type inference-forevery object and expression a (possibly unique) type that captures precisely
those
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properties that the object or expression must have to be used in the context(s) inwhich it appears.
5. unification: With rare exceptions, the programmer need not specify the typesof objects
explicitly. The task of the compiler is to determine whether there existsa consistent assignment
of types to expressions that guarantees, statically, that nooperation will ever be applied to a value
of an inappropriate type at run time.

This job can be formalized as the problem of unification.

6. subtype polymorphism- In object-oriented languages, subtype polymorphism allows a variable
X of

typeT to refer to an object of any type derived from T. Since derived typesare required to support
all of the operations of the base type, the compiler canbe sure that any operation acceptable for
an object of type T will be acceptablefor any object referred to by X.

7. explicit parametric polymorphism (generics)- allow the programmer to define classes with
type parameters. Genericsare particularly useful for container (collection) classes: “list of T”
(List<T>),“stack of T” (Stack<T>), and so on, where T is left unspecified. Like
subtypepolymorphism, generics can usually be type checked at compile time, thoughJava
sometimes performs redundant checks at run time for the sake of interoperabilitywith preexisting
nongeneric code. Smalltalk,Objective-C, Python, and Ruby

use a single mechanism for both parametric and subtype polymorphism, withchecking delayed
until run time.

2.1.4 CLASSIFICATION OF TYPES

Most languages providebuilt-in types similar to those supported in hardware by most processors:
integers,

characters, Booleans, and real (floating-point) numbers.

1. NumericTypes

2. EnumerationTypes

3. SubrangeTypes

4. CompositeTypes

1. NumericTypes

a) A few languages (e.g., C and Fortran) distinguish between different lengths ofintegers and real
numbers; most do not, and leave the choice of precision to theimplementation.

b) A few languages, including C, C++, C# andModula-2, provide both signed andunsigned
integers (Modula-2 calls unsigned integers cardinals).

c) Fortran, C99, Common Lisp, and Schemeprovide a built-in complex type,usually implemented
as a pair of floating-point numbers that represent the realand imaginary Cartesian coordinates;
other languages support these as a standardlibrary class.
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d) Scheme and Common Lisp-provide a built-inrational type, usually implemented as a pair of
integers that represent the numeratorand denominator.
e) Ada supports fixed-point types, which are represented internally by integers,but have an
implied decimal point at a programmer-specified position amongthe digits.
f) Integers, Booleans, and characters are all examples of discrete types (also calledordinal types):
the domains to which they correspond are countable (they havea one-to-one correspondence with
some subset of the integers), and have a welldefinednotion of predecessor and successor for each
element other than the first
and the last.
3. Subrange Types
1. A subrange is a type whose values compose a contiguoussubset of the values of some discrete
base type (also called the parenttype)
2. Subranges were first introduced in Pascal.
3. Subranges in Pascal- In Pascal, subrangeslook like this:
typetest_score = 0..100;
workday = mon..fri;
4. Subranges in Ada-In Ada one would write
typetest_score is new integer range 0..100;
subtype workday is weekday range mon..fri;
5. The range... portion of the definition in Ada is called a type constraint. In thisexample
test_score is a derived type, incompatible with integers. The workdaytype, on the other hand, is a
constrained subtype; workdays and weekdays can bemore or less freely intermixed. The
distinction between derived types and subtypes
is a valuable feature of Ada.
4. Composite Types
Nonscalar types are usually called composite, or constructed types.
1. They are generallycreated by applying a type constructor to one or more simpler types.
2. Commoncomposite types include records (structures), variant records (unions), arrays, sets,
pointers, lists, and files.
i. Records (structures) were introduced by Cobol, and have been supported by mostlanguages
since the 1960s.

A record consists of collection of fields, each ofwhich belongs to a (potentially different)
simpler type.

A record type corresponds to the Cartesian product ofthe types of the fields
ii. Variant records (unions)only one of a variantrecord’s fields (or collections of fields) is valid
at any given time.
iii. ArraysAn array can be thought ofas a function that maps members of an index type to
members of a componenttype. Arrays of characters are often referred to as strings, and are
oftensupported by special-purpose operations not available for other arrays.
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iv. SetsA set type isthe mathematical powerset of its base type, which must often be discrete.A
variable of a set type contains a collection of distinct elements of the basetype.

v. Pointersare I-values. A pointer value is a reference to an object of the pointer’sbase type.
Pointers are often but not always implemented as addresses. Theyare most often used to
implement recursive data types. A type T is recursiveif an object of type T may contain one or
more references to other objects oftype T.

vi. Lists- A list is defined recursively as either an empty list or apair consisting of a head element
and a reference to a sublist. Lists are always of variable length.To find a given element of alist, a
program must examine all previous elements, recursively or iteratively,starting at the head.
Because of their recursive definition, lists are fundamentalto programming in most functional
languages.

vii. Files are intended to represent data on mass-storage devices, outside the memoryin which
other program objects reside.Files usually havea notion of current position, which allows the
index to be implied implicitly

in consecutive operations.

2.2 TYPE CHECKING

Type Checking can be done by using

1. type equivalence,

2. type compatibility,

3. type inference.

2.2.1 Type Equivalence

In a language in which the user can define new types, there are two principal waysof defining
type equivalence.

a) Structural equivalenceis based on the content of type definitions, two types are the same if
they consist of the samecomponents. Used in Algol-68, Modula-3, and C and ML.
type R2 = record

a, b : integer

end;

should probably be considered the same as

type R3 =record

a . integer;

b : integer

end;

But what about

type R4 =record

b : integer;

a : integer

end;
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Should the reversal of the order of the fields change the type? ML says no; most

languages say yes.

b) Name equivalenceis based on the lexicaloccurrence of type definitions, each definition
introduces a new

type. Used in Java, C#, standard Pascal, and most Pascal descendants,including Ada.

Name equivalence is based on the assumption that if the programmer goesto the effort of writing
two type definitions, then those definitions are probablymeant to represent different types.

Variants of Name Equivalence

One subtlety in the use of name equivalence arises in the simplest of type declarations:

Alias types

TYPE new_type = old_type; (* Modula-2 *)

Here new_type is said to be an alias for old_type. Should we treat them as twonames for the
same type, or as names for two different types that happen to havethe same internal structure?
The “right” approach may vary from one program toanother.

1. strictname equivalence- A language in which aliased types are considered distinct is said to
have strict

name equivalence.

Most Pascal-family languages (includingModula-2) use loose name equivalence.

2. loose name equivalence - A language in which aliased types are considered equivalentis said
to have loose name equivalence.

Derived types andsubtypes in Ada- Ada achieves the best of both worlds byallowing the
programmer to indicate whether an alias represents a derived typeor a subtype.

One way to think about the difference between strict and loose name equivalenceis to remember
the distinction between declarations and definitions. Under strict name equivalence, a
declaration type A = B is considered

a definition. Under loose name equivalence it is merely a declaration; Ashares the definition of
B.

Type Conversion and Casts

Dependingon the types involved, the conversion may or may not require code to be executedat
run time. There are three principal cases:

1. The types would be considered structurally equivalent, but the language usesname
equivalence. In this case the types employ the same low-level representation,and have the same
set of values. The conversion is therefore a purelyconceptual operation; no code will need to be
executed at run time.

2. The types have different sets of values, but the intersecting values are representedin the same
way. One type may be a subrange of the other, for example,or one may consist of two’s
complement signed integers, while the other isunsigned.
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3. The types have different low-level representations, but we can nonethelessdefine some sort of
correspondence among their values. A 32-bit integer, forexample, can be converted to a double-
precision IEEE floating-point numberwith no loss of precision. Most processors provide a
machine instruction toeffect this conversion.

NonconvertingType Casts

Occasionally, particularly in systems programs, oneneeds to change the type of a value without
changing the underlying implementation;in other words, to interpret the bits of a value of one
type as if they wereanother type.

A change of type that does not alter the underlying bits is called a nonconvertingtype cast, or
sometimes a type pun. It should not be confused with use of the termcast for conversions in
languages like C.

1. Conversions andnonconverting casts inC++

C++ inherits the casting mechanism of C, but also provides a family of semantically cleaner
alternatives.

2. Specifically, static_cast performs a type conversion,reinterpret_cast performs a nonconverting
type cast, and dynamic_cast allows programs that manipulate pointers of polymorphic types to
performassignments whose validity cannot be guaranteed statically, but can be checked atrun
time.

3. There is also a const_cast that can be used to remove read-only qualification.C-style type casts
in C++ are defined in terms of const_cast, static_cast,and reinterpret_cast; the precise behavior

depends on the source and targettypes.

2.2.2Type Compatibility

Most languages do not require equivalence of types in every context. A value’s type must be
compatible with that of the contextin which it appears.

1. In an assignment statement, the type of the right-hand sidemust be compatible with that of the
left-hand side.

2. The types of the operandsof + must both be compatible with some common type that supports
addition

(integers, real numbers, or perhaps strings or sets).

3. In a subroutine call, the typesof any arguments passed into the subroutine must be compatible
with the types

of the corresponding formal parameters, and the types of any formal parameterspassed back to
the caller must be compatible with the types of the correspondingarguments.

Coercion

Whenever a language allows a value of one type to be used in a context that expectsanother, the
language implementation must perform an automatic, implicit conversionto the expected type.
This conversion is called a type coercion.
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1. A coercion may require run-time code toperform a dynamic semantic check, or to convert
between low-level representations.

Coercion in Ada
Ada coercions sometimes need the former, though never the latter.
d : weekday; -- as in
k : workday; -- as in
typecalendar_column is new weekday;
c :calendar_column;

k :=d; -- run-time check required

d :=k; -- no check required; every workday is a weekday

c :=d; -- static semantic error;
-- weekdays and calendar_columns are not compatible
To perform this third assignment in Ada we would have to use an explicit conversion:
¢ := calendar_column(d);

Coercionin C
1. Coercions are a controversial subject in languagedesign. Because they allow types to be mixed
without an explicit indication ofintent on the part of the programmer, they represent a significant
weakeningof type security.
2. C, which has a relatively weak type system, performs quite a bit ofCoercion in C coercion. It
allows values of most numeric types to be intermixed in expressions,and will coerce types back
and forth “as necessary.”

shortint s;

unsigned long int I;

char c; /* may be signed or unsigned -- implementation-dependent */

float f; /* usually IEEE single-precision */

double d; /* usually IEEE double-precision */

s =1; /* I’s low-order bits are interpreted as a signed number. */

| =s; /* s is sign-extended to the longer length, then

its bits are interpreted as an unsigned number. */

s = c; /* cis either sign-extended or zero-extended to s’s length;

the result is then interpreted as a signed number. */

f=1; /* | is converted to floating-point. Since f has fewer

significant bits, some precision may be lost. */

d =f; /* f is converted to the longer format; no precision lost. */

f=d; /* d is converted to the shorter format; precision may be lost.
If d’s value cannot be represented in single-precision, the
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result is undefined, but NOT a dynamic semantic error. */

3. Fortran 90 allows arrays and records to be intermixed if their types have thesame shape.

a) Two arrays have the same shape if they have the same number ofdimensions, each dimension
has the same size (i.e., the same number of elements),and the individual elements have the same
shape. (In some other languages, theactual bounds of each dimensionmust be the same for the
shapes to be consideredthe same.)

b) Two records have the same shape if they have the same number of fields,and corresponding
fields, in order, have the same shape.

4. Ada’s compatibility rules for arrays are roughly equivalent to those of Fortran90.

5. C provides no operations that take an entire array as an operand. C does,however, allow arrays
and pointers to be intermixed in many cases.

6. Neither Adanor C allows records (structures) to be intermixed unless their types are
nameequivalent.

Overloading and Coercion

1. An overloaded name can refer to morethan one object; the ambiguitymust be resolved by
context.

a) In the expression a + b, + may refer to either the integeror the floating-point addition
operation.

b) In a language without coercion, a and bmust either both be integer or both be real; the

compiler chooses the appropriateinterpretation of + depending on their type.
c) In a language with coercion, + refersto the floating-point addition operation if either a or b is
real; otherwise it refers tothe integer addition operation.

Universal ReferenceTypes
i. For systems programming,or to facilitate thewriting of general-purpose container(collection)
objects (lists, stacks, queues, sets, etc.) that hold references to otherobjects, several languages
provide a universal reference type.

. In C and C++, thistype is called void *.
2. In Clu it is called any;

. InModula-2, address;

. InModula-3,refany;

. InJava, Object;

. In C#, object.
ii. Arbitrary I-values can be assigned into anobject of universal reference type, with no concern
about type safety: because thetype of the object referred to by a universal reference is unknown,
the compilerwill
not allow any operations to be performed on that object.
iii. In Java and C#, a universal to specificassignment requires a type cast, and will generate an
exception if the universalreference does not refer to an object of the casted type.
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iv. in C++ it uses adynamic_cast operation.

2.2.3 Type Inference
1. Theresult of an arithmetic operator usually has the same type as the operands.
2. Theresult of a comparison is usually Boolean.
3. The result of a function call has the typedeclared in the function’s header.
4. The result of an assignment (in languages inwhich assignments are expressions) has the same
type as the left-hand side.
Subranges
Inference of subrange types

typeAtype = 0..20;

Btype = 10..20;

var a : Atype;

b :Btype;
what is the type of a + b?Certainly it is neither Atype nor Btype, since the possiblevalues range
from10 to 40.
1. The usual answer in Pascal and its descendants isto say that the result of any arithmetic
operation on a subrange has the subrange’sbase type, in this case integer.
2. To avoid the expenseof some unnecessary checks, a compiler may keep track at compile time
of the
largest and smallest possible values of each expression, in essence computing theanonymous 10.
.. 40 type.
3. In languages like Ada, the type of an arithmetic expression assumes specialsignificance in the
header of a for loop, because it determines thetype of the index variable.
CompositeTypes
1. Most built-in operators in most languages take operands of built-in types.
2. Type inference becomes an issue when an operation on composites yields aresult of a different
type than the operands.

Type inference on stringoperations:
Character strings provide a simple example. In Pascal, the literal string 'abc'has type array [1..3]
of char.

1. In Ada, the analogous string (denoted "abc")is considered to have an incompletely specified
type that is compatible with anythree-element array of characters.

2. In the Ada expression "abc" & "defg"”, "abc"is a three-character array, "defg" is a four-
character array, and the result is aseven-character array formed by concatenating the two.

3. The seven-character result of the concatenation could beassigned into an array of type array
(1..7) of character or into an array oftype array (weekday) of character, or into any other seven-
element character

array.
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Type inference for sets:

1. Operations on composite values also occur when manipulating sets. Pascal andModula, for
example, support union (+), intersection (*), and difference (-) onsets of discrete values.

2. Set operands are said to have compatible types if theirelements have the same base type T.

2.3RECORDS (STRUCTURES) AND VARIANTS (UNIONS)

Record types allow related data of heterogeneous types to be stored and manipulatedtogether.
1. Some languages (notably Algol 68, C, C++, and Common Lisp)use the term structure
(declared with the keyword struct) instead of record.
2. Fortran 90 simply calls its records “types”: they are the only formof programmerdefinedtype
other than arrays, which have their own special syntax.
3. Java has no distinguished notion of struct; its programmersuse classes in all cases.
4. C# uses a reference model for variables of class types,and a value model for variables of struct
types.
2.3.1Syntax and Operations
A C struct
In C, a simple record might be defined as follows.
struct element {
char name[2];
intatomic_number;
doubleatomic_weight;
_Bool metallic;
Y
A Pascal record
In Pascal, the corresponding declarations would be
typetwo_chars = packed array [1..2] of char;
type element = record
name :two_chars;
atomic_number : integer;
atomic_weight : real;
metallic : Boolean
end;
Accessing record fields
Each of the record components is known as a field. To refer to a given field of a
record, most languages use “dot” notation. In C:
element copper;
const double AN = 6.022e23; /* Avogadro’s number */
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copper.name[0] ='C'; copper.name[1] ='U’;
double atoms = mass / copper.atomic_weight * AN;

Nested records
Most languages allow record definitions to be nested. Again in C:
Nested records
struct ore {
char name[30];
struct {
char name[2];
intatomic_number;
doubleatomic_weight;
_Bool metallic;
} element_yielded,;

ks

ML records and tuples

1. ML differs from most languages in specifying thatthe order of record fields is insignificant.
The ML record value {name = "Cu",atomic_number = 29, atomic_weight = 63.546, metallic =
true} is thesame as the

value {atomic_number = 29, name = "Cu", atomic_weight =63.546, metallic = true} (they will
test true for equality).

2. ML tuples aredefined as abbreviations for records whose field names are small integers. The
values ("Cu", 29), {1 ="Cu", 2 =29}, and {2 = 29, 1 ="Cu"} will all testtrue for equality.

2.3.2Memory Layout and Its Impact

1. The fields of a record are usually stored in adjacent locations in memory. In itssymbol table,
the compiler keeps track of the offset of each field within each recordtype.

2. When it needs to access a field, the compiler typically generates a load orstore instruction with
displacement addressing.

3. For a local object, the base registeris the frame pointer; the displacement is the sum of the
record’s offset from theregister and the field’s offsetwithin the record.

4. On a RISC machine, a global recordis accessed in a similar way, using a dedicated globals
pointer register as base.

5. 0On aCISC machine, the compiler may access the field directly at its absolute address or,if
many fields are to be accessed in a short period of time, it may load a temporaryregister with the
(absolute) address of the record and then use the field’s offset asdisplacement.

Memory layout for a record type
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4 bytes/32 bits

atomic_number

atomic_weight

metallic

Figure 2.1.Likely layout in memory for objects of type element on a 32-bit machine. Alignment
restrictions lead to the shaded “holes.”

A layout for our element type on a 32-bit machine appears inFigure 2.1.
1. Because the name field is only two characters long, it occupies two bytesin memory.
2. Since atomic_number is an integer, and must (on most machines)be word-aligned, there is a
two-byte “hole” between the end of name and thebeginning of atomic_number.
3. Similarly, since Boolean variables (in most languageimplementations) occupy a single byte,
there are three bytes of empty spacebetween the end of the metallic field and the next aligned
location. In an arrayof elements, most compilers would devote 20 bytes to every member of
thearray.
4. In a language with a value model of variables, nested records are naturallyembedded in the
parent record, where they function as large fields with word ordouble-word alignment.
5. In a language with a reference model of variables, fieldsof record type are typically references
to data in another location. The difference isa matter not only of memory layout, but also of
semantics.
Nested records as values
In Pascal, the followingprogram prints a 0.
type
T = record
j @ integer;
end;
S =record
i : integer;
n:T,
end;
varsl, s2:S;

sl.n.j:=0;
s2 :=sl;
s2.nj =17,
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writeln(s1.n.j); (* prints 0 *)
The assignment of s1 into s2 copies the embedded T.

Nested records as references
By contrast, the following Java program prints a 7. (Simple classes in Java playthe role of
structs.)
class T {
publicint j;
}
class S {
publicinti;
public T n;
}

S sl =new S();

sl.n = new T(); /I fields initialized to O

Ss2=sl;

s2.nj=17,

System.out.printin(sl.n.j);  // prints 7

Here the assignment of s1 into s2 has copied only the reference, so s2.n.j is analias for s1.n.j.

Layout of packed types
A few languages—notably Pascal—allow the programmer to specify that arecord type (or an
array, set, or file type) should be packed:
type element = packed record

name :two_chars;

atomic_number : integer;

atomic_weight : real;

metallic : Boolean
end;
1. The keyword packed indicates that the compiler should optimize for space insteadof speed. In
most implementations a compiler will implement a packed recordwithout holes, by
simply“‘pushing the fields together.”
2. To access a nonaligned field,however, it will have to issue amulti-instruction sequence that
retrieves the piecesof the field from memory and then reassembles them in a register.
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4 bytes/32 bits

atomic_

number

atomic_

metallic

Figure 2.2 Likely memory layout for packed element records. The atomic_number and
atomic_weight fields are nonaligned, and can only be read or written (on most machines) via
multi-instruction sequences.

3. Ada, Modula-3, and C provide more elaboratepacking mechanisms, which allow the
programmer to specify precisely how manybits are to be devoted to each field.

Assignment and comparison of records
Most languages allow a value to be assigned to an entire record in a singleoperation:
my_element := copper;

Minimizing holes by sorting fields

1. holes in records waste space.

2. Packingeliminates holes, but at potentially heavy cost in access time.

3. A compromise,adopted by some compilers, is to sort a record’s fields according to the size of
their alignment constraints.

4. All byte-aligned fields might come first, followed byany half-word aligned fields, word-
aligned fields, and (if the hardware requires)double-word-aligned fields.

5. For element type, the resulting rearrangementis shown in Figure 2.3.

4 bytes/32 bits

atomic_number

atomic_weight

Figure 2.3 Rearranging record fields to minimize holes. By sorting fields according to the sizeof
their alignment constraint, a compiler can minimize the space devoted to holes, while keepingthe
fields aligned.
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2.3.3 With Statements

In programs with complicated data structures, manipulating the fields of a deeply
nested record can be awkward:

ruby.chemical composition.elements[1].name :=Al’;
ruby.chemical_composition.elements[1].atomic_number :=13;
ruby.chemical_composition.elements[1].atomic_weight := 26.98154;
ruby.chemical_composition.elements[1].metallic := true;

Pascal provides a with statement to simplify such constructions:

withruby.chemical_composition.elements[1] do begin
name = "Al’;
atomic_number :=13;
atomic_weight := 26.98154;
metallic := true
end;

2.3.4 Variant Records (Unions)
Programming languages of the 1960s and 1970s were designed in an era of severememory
constraints.
1. Many languages allowed the programmer to specify that certain variables(presumably ones
that would never be used at the same time) should beallocated “on top of”” one another, sharing
the same bytes in memory.
2. C’s syntax,
heavily influenced by Algol 68, looks very much like a struct:
union {

inti;

double d;

_Bool b;
j
3. Unions have been used for two main purposes.
I. Insystems programs, where unions allow the same set of bytes to be interpretedin different
ways at different times.
ii. The second common purpose for unions is to represent alternative sets offields within a
record.

2.4 ARRAYS
1. Composite data types.
2. Beginning with Fortran I.
3. A mapping from an indextype to a component or element type.
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i. Fortran require that the index type be integer;
ii. Fortran 77 require that the element type of an array be scalar.
iii. Fortran 90 allow any element type
iv. scripting languages allow non discrete index types.
2.4.1 Syntax and Operations
Most languages refer to an element of an array by appending a subscript—delimited by
parentheses or square brackets—to the name of the array.
i. In FortranandAda, one says A(3);
ii. In Pascal and C, one says A[3]
Declarations
1.InC:
char upper[26];
In C, the lower bound of an index range is always zero: the indices of an n-elementarray
are0...n-1.
2. In Fortran:
character, dimension (1:26) :: upper
character (26) upper ! shorthand notation
In Fortran, the lower bound of the index range is one bydefault.
3. In Pascal:
var upper : array [’a’..’z’] of char;
arrays are declared with an array constructor
4. In Ada:
upper : array (character range ’a’..’z’) of character;

Multidimensional arrays
1. Ada
mat : array (1..10, 1..10) of real,
2. Fortran
real, dimension (10,10) :: mat
3. In Modula-3
VAR mat : ARRAY [1..10], [1..10] OF REAL;
Array constructor.
Multidimensional vs built-up arrays
In Ada
matl : array (1..10, 1..10) of real,
IS not the same as
type vector is array (integer range <>) of real;
type matrix is array (integer range <>) of vector (1..10);
mat2 : matrix (1..10);
i. Variable matl is a two-dimensional array;can access individual real numbers as mat1(3, 4);
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ii. mat2 is an array of one-dimensionalarrays.with the latter we must say mat2(3)(4)

Arrays of arrays in C

In C, one must also declare an array of arrays, and use two-subscript notation
double mat[10][10];

1. Given this definition, mat[3][4] denotes an individual element of the array

2. mat[3] denotes a reference

either to the third row of the array or to the first element of that row, depending on

context.

Slices and Array Operations

A slice or section is a rectangular portion of an array.

Fortran 90 and SingleAssignment C provide extensive facilities for slicing, as do many scripting
languages,

including Perl, Python, Ruby, and R.

real, dimension (10,10) :: mat
1. Ada provides more limited support: a slice is simply a contiguous range of elementsin a one-
dimensional array.
operations
1.selection ofan element
2. assignment
3. compared for equality (Ada and Fortran 90)

Ada allows one-dimensional arrays whose elements arediscrete to be compared for
lexicographic ordering : A < B if the first element of Athat is not equal to the corresponding
element of B is less than that correspondingelement.

4. Ada allows the built-in logical operators (or, and, xor) to be appliedto Boolean arrays.
5. Fortran 90

i. A + B is an arrayeach of whose elements is the sum of the corresponding elements of A
and B

ii. Fortran 90 provides a huge collection of intrinsic, or built-in functions.Morethan 60 of
these (including logic and bit manipulation, trigonometry, logs andexponents, type conversion,
and string manipulation) are defined on scalars, butwill also perform their operation element-
wise if passed arrays as arguments.

6. APL, an array manipulation language developed by Iverson and others in the earlyto mid-
1960s.

2.4.2 Dimensions, Bounds, and Allocation

1. static shape arrays(the shape of the array (includingbounds) was specified in the declaration)
storage canbe managed in the usual way:
static allocation for arrays whose lifetime is theentire program;

2.stack allocation for arrays whose lifetime is an invocation of asubroutine;

3. heap allocation for dynamically allocated arrays with more generallifetime.
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matrix(:4, 2:8:2) matrix(:, (/2, &5, 9/))

Figure 2.4 Array slices (sections) in Fortran 90. Much like the values in the header of an
enumeration-controlled loop , a : b : ¢ in a subscript indicates positions a, a + ¢, a +2c, . . .

through b. If a orb is omitted, the corresponding bound of the array is assumed. If c is omitted, 1
is assumed. It is even possible to use negative values of c in order to select positions inreverse
order. The slashes in the second subscript of the lower right example delimit an explicitlist of
positions.

Descriptors or Dope Vectors

During compilation, the symbol table maintains dimension and bounds informationfor every
array in the program.When the number and bounds of array dimensions are not statically known,
the compiler must generate code to look them up in a dope vector at run time.

1. a dope vector will contain the lower bound of each dimension andthe size of each dimension
other than the last.

2. If the language implementationperforms dynamic semantic checks for out-of-bounds
subscripts in array

references, then the dope vector may contain upper bounds as well.

3. The contents of the dope vector are initialized at elaboration time, or wheneverthe number or
bounds of dimensions change.

Fortran 90- notion of shape includes dimension sizes but not lower bounds, an
assignmentstatementmay need to copy not only the data of an array, but dope vector contentsas
well.

Stack Allocation
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Subroutine parameters are the simplest example of dynamic shape arrays.
Pascal: allow array parameters to have bounds thatare symbolic names rather than constants. It
calls these parameters conformantarrays:

function DotProduct(A, B:array [lower..upper:integer] of real):real;
var 1 : 1lnteger;
rtn : real:
begin
rtn := 0;
for i := lower to upper do rtn := rtn + A[i] * B[i];
DotProduct := rtn
end:
Here lower and upper are initialized at the time of call, providing DotProductwith the
information it needs to understand the shape of A and B. In effect, lowerand upper are extra
parameters of DotProduct.
Conformant arrays are highly useful in scientific applications, many of whichrely on numerical
libraries for linear algebra and the manipulation of systems ofequations. Since different programs
use arrays of different shapes, the subroutinesin these libraries need to be able to take arguments
whose size is not known at
compile time.
Pascal allows conformant arrays to be passed by reference or by value.
Stack allocation of elaborated arrays

-- Ada:
procedure foo (size : integer) is Variable-size
M : array (1..size, 1..size) of real; part of the frame

begin

end foo;

Local
variables
Fixed-size part

C99: . .
/1 of the frame

void foo(int size) {
double M[size] [sizel; Bookkeeping

Return address

Arguments
and returns
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Figure 2.5 Elaboration-time allocation of arrays in Ada or C99. Here M is a square
twodimensional array whose bounds are determined by a parameter passed to foo at run time.
The compiler arranges for a pointer to M and a dope vector to reside at static offsets from the
frame pointer. M cannot be placed among the other local variables because it would prevent
those higher in the frame from having static offsets. Additional variable-size arrays or records
are easily accommodated.

Every local object can be found using a known offset fromthe frame pointer.

1. divide the stack frame into a fixedsize-part and a variabl-size part

2. An object whose size is statically known goes inthe fixed-size part.

3. An object whose size is not known until elaboration time goesin the variable-size part, and a
pointer to it, together with a dope vector, goes inthe fixed-size part.

Heap Allocation

1. Arrays that can change shape at arbitrary times are sometimes said to be fullydynamic

2. fully dynamic arrays must be allocated in the heap

Dynamic strings in Java and C#

String variables in these languages are references toimmutable string objects:

String s = "short"; // This is Java; use lowercase 'string' in C#

= s + " but sweet"; // + is the concatenation operator

Here the declaration String s introduces a string variable, which we initializewith a reference to
the constant string "short”. In the subsequent assignment, +creates a new string containing the
concatenation of the old s and the constant” but sweet™; s is then set to refer to this new string,
rather than the old.

3. If the number of dimensions of a fully dynamic array is statically known, thedope vector can
be kept, together with a pointer to the data, in the stack frameof the subroutine in which the array
was declared. If the number of dimensionscan change, the dope vectormust generally be placed
at the beginning of the heapblock instead.
4. In the absence of garbage collection, the compiler must arrange to reclaim thespace occupied
by fully dynamic arrays when control returns from the subroutinein which theywere declared.
Space for stack-allocated arrays is of course reclaimedautomatically by popping the stack.
2.4.3 Memory Layout
1. one-dimensional array
i. the second element of the array is storedimmediately after the first (subject to
alignment constraints); the third is storedimmediately after the second, and so forth.
ii. For arrays of records
it is commonfor each subsequent element to be aligned at an address appropriate for any
type
2. multidimensional arrays
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it still makes sense to put the first element ofthe array in the array’s first memory location. But
which element comes next?
i. row-major
consecutive locations in memory hold elements that differ byone in the final subscript (except at
the ends of rows)

e.g., A[2, 4]is followed by A[2, 5].
The advantage ofrow-major order is that it makes it easy to define a multidimensional array as
anarray of subarrays
ii. column-major
consecutive locations hold elementsthat differ by one in the initial subscript

e.g., A[2, 4] is followed by A[3, 4]
theelements of the subarray would not be contiguous in memory
Array layout and cache performance
a) When code traverses a small array, all or mostof its elements are likely to remain in the cache
through the end of the nestedloops, and the orientation of cache lines will not matter.

Row-major order Column-major order

Figure 2.6 Row- and column-major memory layout for two-dimensional arrays.
In row-majororder, the elements of a row are contiguous in memory; in column-major
order, the elementsof a column are contiguous. The second cache line of each array is
shaded, on the assumption
that each element is an eight-byte floating-point number, that cache lines are 32 bytes
long (acommon size), and that the array begins at a cache line boundary. If the array is
indexed fromA[0,0] to A[9,9], then in the row-major case elements A[0,4] through
A[0,7] share a cache line;in the column-major case elements A[4,0] through A[7,0] share
a cache line.

b) For a large array, however,lines that are accessed early in the traversal are likely to be evicted
to make

room for lines accessed later in the traversal.

c) If array elements are accessed inorder of consecutive addresses, then each miss will bring into
the cache not onlythe desired element, but the next several elements as well.
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d) If elements are accessedacross cache lines instead then there is a good chance that almost
everyaccess will result in a cache miss, dramatically reducing the performance of thecode.
In C,

for (i = 0; 1 < N; i++) { /* rows */
for (j = 0; j < N; j++) { /* columns */
Ali]1[;]

L
}

In Fortran:
do j =1, N
do 1 =1, N
A(i, j)
end do
end do

Row-Pointer Layout

Rather than require the rows of an array to be adjacent, they allow them tolie anywhere in
memory, and create an auxiliary array of pointers to the rows.

1. If the array has more than two dimensions, it may be allocated as an array ofpointers
toarraysofpointers to. . . .This row-pointer memory layout requires morespace in most cases.
2. Advantages of Row-Pointer Layout

i. First, it sometimes allowsindividual elements of the array to be accessed more quickly,
especially on CISC

machines with slow multiplication instructions.

ii.Second, it allows the rows to have different lengths, withoutdevoting space to holes at the ends
of the rows. This representation is sometimescalled a ragged array. The lack of holes may
sometimes offset the increased spacefor pointers.

iii. Third, it allows a program to construct an array from preexistingrows without copying.
3. C, C++, and C#provide both contiguous and row-pointer organizations for
multidimensionalarrays.

Java uses therow-pointer layout for all arrays.

4. The contiguous layout is a true multidimensionalarray.

5. The row-pointer layout is an array of pointers to arrays.
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char days[1[10] = { char *days[] = {
"Sunday", "Monday", "Tuesday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Wednesday", "Thursday",

"Friday", "Saturday" "Friday", "Saturday"
}; };

days[2][3] == ’s’; /% in Tuesday */ days [2] [3] ; /% in Tuesday

aly

aly 1 t|u

Figure 2.7 Contiguous array allocation vs row pointers in C
The declaration on the left is a true two-dimensional array.Theslashed boxes are NUL bytes; the
shaded areas are holes. The declaration on the right is a ragged array of pointers to arraysof
characters. In both cases, we have omitted bounds in the declaration that can be deduced from
the size of the initializer(aggregate). Both data structures permit individual characters to be
accessed using double subscripts, but the memory layout(and corresponding address arithmetic)
IS quite different.

Contiguous vs row-pointerarray layout

By far the most commonuse of the row-pointer layout inCis to represent arraysof strings. A
typical example appears in Figure 2.7. In this example (representingthe days of the week), the
row-pointer memory layout consumes 57 bytes forthe characters themselves (including a NUL
byte at the end of each string), plus28 bytes for pointers (assuming a 32-bit architecture), for a
total of 85 bytes.The contiguous layout alternative devotes 10 bytes to each day (room enoughfor
Wednesday and its NUL byte), for a total of 70 bytes. The additional spacerequired for the row-
pointer organization comes to 21%.

Address Calculations
Indexing a contiguous array
For the usual contiguous layout of arrays, calculating the address of a particularelement is
somewhat
complicated, but straightforward. Suppose a compiler isgiven the following declaration for a
three-dimensional array:
A :array [L1..U1] of array [L2 . .U2] of array [L3 . .U3] of elem_type;
Let us define constants for the sizes of the three dimensions:
S3 =size of elem_type
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S2=(U3-L3+1)xS3
S1=(U2-L2+1)xS2

Here the size of a row (S2) is the size of an individual element (S3) times thenumber of elements
in a row (assuming row-major layout). The size of a plane(S1) is the size of a row (S2) times the
number of rows in a plane. The address ofAl[l, j, k] is then
address of A

+ (i —L1) xSl

+(j — L2) x S2

+ (k—L3) < S3
if the bounds of the array are known at compiletime, then S1, S2, and S3 are compile-time
constants, and the subtractions of lowerbounds can be distributed out of the parentheses:

(i < S1) + (j x S2) + (k x S3) + address of A
—[(L1 x S1) + (L2 x S2) + (L3 x S3)]

T Address of A

Figure 2.8 Virtual location of an array with nonzero lower bounds.
By computing the constantportions of an array index at compile time, we effectively index into
an array whose startingaddress is offset in memory, but whose lower bounds are all zero.

The bracketed expression in this formula is a compile-time constant (assumingthe bounds of A
are statically known). If A is a global variable, then the address ofA is statically known as well,
and can be incorporated in the bracketed expression.If A is a local variable of a subroutine (with
static shape), then the address of Acan be decomposed into a static offset (included in the
bracketed expression) plusthe contents of the frame pointer at run time. We can think of the
address of Aplus the bracketed expression as calculating the location of an imaginary arraywhose
[i, J, k]th element coincides with that of A, but whose lower bound in eachdimension is zero.
This imaginary array is illustrated in Figure 2.8.

Static and dynamic portions of an array index
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If i, j, and/or k is known at compile time, then additional portions of thecalculation of the address
of A[i, j, K] will move from the dynamic to the staticpart of the formula shown above. If all of
the subscripts are known, then theentire address can be calculated statically. Conversely, if any
of the bounds ofthe array are not known at compile time, then portions of the calculation
willmove from the static to the dynamic part of the formula. For example, if L1 is notknown until
run time, but k is known to be 3 at compile time, then the calculation

becomes(i x S1) + (j x S2) — (L1 x S1) + address of A — [(L2 x S2) + (L3 x S3) — (3 x
S3)]Again, the bracketed part can be computed at compile time. If lower bounds arealways
restricted to zero, as they are in C, then they never contribute to run-timecost.

2.5 STRINGS

A string is simply an array of characters.

1. Manylanguages, including C and its descendants, distinguish between literal
characters(usually delimited with single quotes) and literal strings (usually delimited withdouble
quotes)

2. Other languages (e.g., Pascal) make no distinction: a character isjust a string of length one.

3. Most languages also provide escape sequences that allownonprinting characters and quote
marks to appear inside of strings.

4. The set of operations provided for strings is strongly tied to the implementationenvisioned by
the language designer(s)

5. Several languages that do not in generalallow arrays to change size dynamically do provide
this flexibility for strings.

i.First, manipulation of variable-length strings is fundamentalto a huge number of
computer applications, and in some sense “deserves” specialtreatment.

ii. Second, the fact that strings are one-dimensional, have one-byte elements,and never
contain references to anything else makes dynamic-size stringseasier to implement than general
dynamic arrays.

6. Some languages require that the length of a string-valued variable be boundno later than
elaboration time, allowing the variable to be implemented as acontiguous array of characters in
the current stack frame.

7. Pascal and Ada supporta few string operations, including assignment and comparison for
lexicographic

ordering.

8. Cprovides only the ability to create a pointer to astring literal.

9. Other languages allow the length of a string-valued variable to change over itslifetime,
requiring that the variable be implemented as a block or chain of blocksin the heap.

10. ML and Lisp provide strings as a built-in type.

11. C++, Java, and C#provide them as predefined classes of object, in the formal, object-oriented
sense.
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12. In all these languages a string variable is a reference to a string.

13. Concatenation andother string operators implicitly create new objects.

14. The space used by objects thatare no longer reachable from any variable is reclaimed
automatically.

2.6 Sets

A programming language set is an unordered collection of an arbitrary number ofdistinct values
of a common type.

1. Sets were introduced by Pascal, and are foundin many more recent languages as well.

2. The type from which elements of a set aredrawn is known as the base or universe type.

3. Set types in Pascal

Pascal supports sets of any discretetype, and provides union, intersection, and difference
operations:

var A, B, C : =set of char;
D, E : set of weekday;

A :=B+C; (* union; A := {x | x is in B or x is in C} *)
A :=B C; (#* intersection; A {x | ¥ is in B and x is in C} #*)

A :=B C; (% difference; A := {x | x is in B and x is not in C} *)

4. Sets appear in the standardlibraries of many object-oriented languages, including C++, Java,
and C#.

5. There are many ways to implement sets, including arrays, hash tables, andvarious forms of
trees.

2.7 POINTERS AND RECURSIVETYPES

In languages that use a valuemodel of variables, recursive types require the notion of a pointer: a
variable (or

field) whose value is a reference to some object.

1. Pointers were first introducedin PL/I.

2. In some languages (e.g., Pascal, Ada 83, and Modula-3), pointers are restrictedto point only to
objects in the heap.

2.7.1 Syntax and Operations

Operations on pointers include

1. allocation and deallocation of objects in the heap,

2. dereferencing of pointers to access the objects towhich they point,

3. and assignmentof one pointer into another.
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The behavior of these operations depends heavily onwhether the language is functional or
imperative

1. Functional languages generally employ a reference model for names

2. Variables in an imperative language may useeither a value or a reference model, or some
combination of the two

Reference Model

1. Tree type in ML

In ML, the datatype mechanism can be used to declare recursive types:

datatypechr_tree = empty | node of char * chr_tree * chr_tree;

Here a chr_tree is either an empty leaf or a node consisting of a character andtwo child trees.
It is natural in ML to include a chr_tree within a chr_tree because everyvariable is a reference.
The tree node (#'R", node (#"X", empty, empty),node (#"Y", node (#"Z", empty, empty), node
(#"W", empty, empty)))

would most likely be represented in memory as shown in Figure 2.9.

|node|H‘ ‘

Figure 2.9 Implementation of a tree in ML. The abstract (conceptual) tree is shown at the
lower left

2. Tree type in Lisp

In Lisp,which uses a reference model of variables but is not statically typed, ourtree could be
specified textually as *(#F\R (#\X ()()) #\Y (#\Z 0(0) #\W(0())))-

i.Each level of parentheses brackets the elements of a list.

ii. the outermost such list contains three elements: the character R and nested liststo represent the
left and right subtrees.

iii. each list is a pairof references: one to the head and one to the remainder of the list.
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Figure 2.10 Implementation of a tree in Lisp. A diagonal slash through a box indicates a null
pointer. The C and A tags serveto distinguish the two kinds of memory blocks: cons cells and
blocks containing atoms.

At the top levelof the figure, the first cons cell points to R; the second and third point to
nestedlists representing the left and right subtrees. Each block of memory is tagged toindicate
whether it is a cons cell or an atom. An atom is anything other than acons cell; that is, an object
of a built-in type (integer, real, character, string, etc.), ora user-defined structure (record) or
array.

2.7.3 Garbage Collection

Explicit reclamation of heap objects is a serious burden on the programmer and amajor source of
bugs (memory leaks and dangling references).

1. An attractive alternative is to have the language implementationnotice when objects are no
longer useful and reclaim them automatically (otherwise known as garbage collection).

2. Automatic collection is difficult toimplement.

3. Automatic collection also tends tobe slower than manual reclamation.

Reference Counts

When is an object no longer useful?

1. One possible answer is: when no pointers toit exist.

2. The simplest garbage collection technique simply places a counter ineach object that keeps
track of the number of pointers that refer to the object.

3. When the object is created, this reference count is set to 1, to represent the pointerreturned by
the new operation.

4. When one pointer is assigned into another, therun-time system decrements the reference count
of the object formerly referred toby the assignment’s left-hand side, and increments the count of
the object referredto by the right-hand side.
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Figure 2.12 Reference counts and circular lists. The list shown here cannot be found via any
program variable, but because it is circular, every cell contains a nonzero count.

stooges := nil;

5. When a reference count reaches zero, its object canbe reclaimed.

6. The standard technique to track the location of every pointer information relies on
typedescriptors generated by the compiler.

7. There is one descriptor for every distincttype in the program, plus one for the stack frame of
each subroutine, and onefor the set of global variables.

Tracing Collection

1. A better definition of a “useful” object is one that can be reached by following achain of valid
pointers starting from something that has a name (i.e., somethingoutside the heap).

2. Tracingcollectors work by recursively exploring the heap, starting from external pointers,to
determine what is useful.

Mark-and-Sweep

1. The classic mechanism to identify useless blocks, under thismore accurate definition, is known
as mark-and-sweep

2. It proceeds in three mainsteps, executed by the garbage collector when the amount of free
space remaining

in the heap falls below some minimum threshold.

1. The collector walks through the heap, tentatively marking every block as “useless.”

2. Beginning with all pointers outside the heap, the collector recursively exploresall linked data
structures in the program, marking each newly discovered blockas “useful.” (When it encounters
a block that is already marked as “useful,” thecollector knows it has reached the block over some
previous path, and returns

withoutrecursing.)

3. The collector again walks through the heap, moving every block that is stillmarked “useless”
to the free list.

Pointer Reversal
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As the collector explores the path to a given block, it reverses the pointers it follows,so that each
pointsback to the previous block instead of forward to the next.

- curr
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Figure 2.13 Heap exploration via pointer reversal

The block currently under examination is indicated by the curr pointer.The previous block is

indicated by the prev pointer. As the garbage collector moves from one block to the next, it
changes thepointer it follows to refer back to the previous block. When it returns to a block it

restores the pointer. Each reversed pointer
must be marked (indicated with a shaded box), to distinguish it from other, forward pointers in
the same block.

1. To return from block X to block U (after part (d) of the figure), the collectorwill use the
reversed pointer in U to restore its notion of previous block (T).

2. Itwill then flip the reversed pointer back to X and update its notion of currentblock to U.
Stop-and-Copy

1. In a language with variable-size heap blocks, the garbage collectorcan reduce external
fragmentation by performing storage compaction.

2. Manygarbage collectors employ a technique known as stop-and-copy that achieves
compactionwhile simultaneously eliminating Steps 1 and 3 in the standard mark-
andsweepalgorithm.

i. Divide the heap into two regions of equal size.

ii. All allocation happens in the first half.

iii. When this half is (nearly) full, the collectorbegins its exploration of reachable data structures.
iv. Each reachable block is copiedinto the second half of the heap, with no external
fragmentation.

Generational Collection

1. exploiting the observation that mostdynamically allocated objects are short-lived.

2. The heap is divided into multipleregions (often two)
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3. When space runs low the collector first examines the youngestregion (the “nursery”), which it
assumes is likely to have the highest proportionof garbage.

4. Only if it is unable to reclaim sufficient space in this region does thecollector examine the
next-older region.

Conservative Collection

1. Everything that seems to point into a heapblock is in fact a valid pointer, then we can proceed
with mark-and-sweep collection.

2. When space runs low, the collector (as usual) tentatively marks all blocks inthe heap as
useless.

3. It then scans all word-aligned quantities in the stack and inglobal storage.

4. If any of these words appears to contain the address of somethingin the heap, the collector
marks the block that contains that address as useful.

5. Recursively, the collector then scans all word-aligned quantities in the block, andmarks as
useful any other blocks whose addresses are found therein.

6. Finally, the collector reclaims any blocks that are still marked useless.

2.8 LISTS

A list is defined recursively as either the empty list or a pair consisting of an object(which may

be either a list or an atom) and another (shorter) list.

1. Lists are ideallysuited to programming in functional and logic languages.

2. In Lisp, in fact, a program is a list, and can extend itself at run time by constructinga list and
executing it.

3. Lists can also be used in imperative programs.

4. a list class is easy to write in most object-oriented languages.

5. Most scripting languages provide extensive list support.

6. Lists work best in a languagewith automatic garbage collection.

Lists in ML and Lisp

1. lists in ML are homogeneous:every element of the list must have the same type.

i. An ML list is usually a chain of blocks, each ofwhich contains an element and a pointer to the
next block

ii. Clu resembles ML

iii. An ML list is enclosedList notation in square brackets, with elements separated by commas:
[a, b, c, d].

2. Lisp lists, by contrast, areheterogeneous: any object may be placed in a list.

i. A Lisp list is a chainof cons cells, each of which contains two pointers, one to the element and
one to

the next cons cell.

ii. Python and Prolog resemble Lisp.
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iii. A Lisplist is enclosed in parentheses, with elements separated by white space: (a b cd).
aproper list: one whose innermostpair consists of the final element and the empty list.
animproper list: whose final pair contains two elements.

3. Lispsystems provide amore general, but cumbersome dotted list notation that capturesboth
proper and improper lists.

4. A dotted list is either an atom (possibly null)or a pair consisting of two dotted lists separated
by a period and enclosed inparentheses. The dotted list (a. (b . (c. (d . null)))) is the same as (a b
cd).

5. Thelist (a. (b. (c.d))) is improper; its final cons cell contains a pointerto d in the second
position, where a pointer to a list is normally required.

Basic list operations in Lisp

(cons 'a ‘(b)) ==(a b)

(car'(ab)) ==a

(car nil) ==7??

(cdr'(abc)) ==(bc)

(cdr '(a)) ==nil

(cdr nil) ==??

(append ‘(ab) '(cd)) ==(abcd)

Basic list operations in ML

a:: [b] =={a, b]

hd [a, b] ==a

hd [ ] == run-time exception

tl [a, b, c] ==Ib, c]

tl [a] ==nil

tl [ ] == run-time exception

[a,b] @ [c,d] ==]a, b, c, d]

list functions
. test a list to see if it is empty;
. return the length of a list;
. return the nth elementof a list, or a list consisting of all but the first n elements;
. reverse the order of theelements of a list;
. search a list for elements matching some predicate;
. apply afunction to every element of a list, returning the results as a list.

2.9 FILES AND INPUT/OUTPUT
1. Interactive 1/0 generally implies communicationwith human users or physical devices, which

work in parallel with the runningprogram, and whose input to the program may depend on earlier
output from
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the program (e.g., prompts).
i. 1/O is one of the most difficult aspects of a language to design, and one thatdisplays the least
commonality from one language to the next.
ii. Some languagesprovide built-in file data types and special syntactic constructs for 1/O.
iii. Othersrelegate 1/0 entirely to library packages, which export a (usually opaque) filetype and a
variety of input and output subroutines.
iv. The principal advantage oflanguage integration is the ability to employ non—subroutine-call
syntax, and to
performoperations (e.g., type checking on subroutine calls with varying numbersof parameters)
that may not otherwise be available to library routines
2. Files generally refer to off-line storage implementedby the operating system.
3. Files may be further categorized into

I. temporary and

ii. persistent.
4. Temporary files exist for the duration ofa single program run; their purpose is to store
information that is too large to fitin the memory available to the program.
5. Persistent files allow a program to readdata that existed before the program began running,
and to write data that willcontinue to exist after the program has ended.

2.10 EQUALITYTESTING AND ASSIGNMENT

Consider for example the problem of comparing two character strings. Shouldthe expression s =t
determine whether s and t.

are aliases for one another?

occupy storage that is bit-wise identical over its full length?
contain the same sequence of characters?

would appear the same if printed?

1. The second of these tests is probably too low-level to be of interest in most programs;

it suggests the possibility that a comparison might fail because of garbagein currently unused
portions of the space reserved for a string.

2. The other threealternatives may all be of interest in certain circumstances, and may
generatedifferent results.

3. In many cases the definition of equality boils down to the distinction between

I-values and r-values.

4. shallowcomparison: should expressions be consideredequal only if they refer to the same
object,

Under a reference model of variables: a shallow assignment a := bwill make a refer to the object
to which b refers.
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Under a value model of variables: a shallow assignment will copy the value of b into a
5.deepcomparison:if the objects to whichthey refer are in some sense equal?

Under a reference model of variables:A deep assignment will create acopy of the object to which
b refers, and make a refer to the copy.

6. Most programming languages employ both shallow comparisons and shallowassignment.

7. Scheme, for example, has three general-purposeequality-testing functions:

(eg? a b) ; do a and b refer to the same object?
(eqv? ab) ; are a and b known to be semantically equivalent?
(equal? a b) ; do a and b have the same recursive structure?

Both eqg?andeqv? perform a shallow comparison.

8. Deep assignments are relatively rare.
i. They are used primarily in distributedcomputing, and in particular for parameter passing in
remote procedure call(RPC) systems.

MODULE -3

= DATA ABSTRACTION, in which the principal purpose of the abstraction is to represent
information

= CONTROL ABSTRACTION, in which the principal purpose of the abstraction is to
perform a well-defined operation

= SUBROUTINES are the principal mechanism for control abstraction in most
programming languages.

Subroutines are the principal mechanism for control abstraction in most programming languages.
A subroutine performs its operation on behalf of a caller, who waits for the subroutine to finish
before continuing execution.

Most subroutines are parameterized: the caller passes arguments that influence the subroutine’s
behavior, or provide it with data on which to operate. Arguments are also called actual
parameters. They are mapped to the subroutine’s formal parameters at the time a call occurs.
A subroutine that returns a value is usually called a function.

A subroutine that does not return a value is usually called a procedure.

Most languages require subroutines to be declared before they are used, though a few do not
(including Fortran, C, and Lisp).

Declarations allow the compiler 8to verify that every call to a subroutine is consistent with the
declaration; for example, that it passes the right number and types of arguments.

Each routine, as it is called, is given a new stack frame, or activation record, at the top of the
stack. This frame may contain arguments and/or return values, bookkeeping information
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(including the return address and saved registers), local variables, and/or temporaries. When a
subroutine returns, its frame is popped from the stack.

At any given time, the stack pointer register contains the address of either the last used location
at the top of the stack, or the first unused location, depending on convention. The frame pointer
register contains an address within the frame.

Obijects in the frame are accessed via displacement addressing with respect to the frame pointer.
If the size of an object (e.g., a local array) is not known at compile time, then the object is placed
in a variable-size area at the top of the frame; its address and dope vector (descriptor) are stored
in the fixed-size portion of the frame, at a statically known offset from the frame pointer. If there
are no variable-size objects, then every object within the frame has a statically known offset from
the stack pointer, and the implementation may dispense with the frame pointer, freeing up a
register for other use. If the size of an argument is not known at compile time, then the argument
may be placed in a variable-size. portion of the frame below the other arguments, with its address
and dope vector at known offsets from the frame pointer. Alternatively, the caller may simply
pass a temporary address and dopevector, counting on the called routine to copy the argument
into the variable-size area at the top of the frame.

Static

]_'J.j_ma mic 2 T Links
Links ( \

Figure 8.l Example of subroutine nesting, taken from Figure 3.5.Within B, C, and D, all five
routines are visible. VWithin A and E, routines &, B, and E are visible, but C and D are not. Given
the calling sequence A, E, B, D, C,in that order, frares will be allocated on the stack as shown at
right, with the indicated static and dynamic links.

In a language with nested subroutines and static scoping (e.g., Pascal, Ada, ML, Common Lisp,
or Scheme), objects that lie in surrounding subroutines, and that are thus neither local nor global,
can be found by maintaining a static chain. Each stack frame contains a reference to the frame of
the lexically surrounding subroutine. This reference is called the static link. By analogy, the
saved value of the frame pointer, which will be restored on subroutine return, is called the
dynamic link. The static and dynamic links may or may not be the same, depending on whether
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the current routine was called by its lexically surrounding routine, or by some other routine
nested in that surrounding routine.

Whether or not a subroutine is called directly by the lexically surrounding routine, we can be
sure that the surrounding routine is active; there is no other way that the current routine could
have been visible, allowing it to be called. If subroutine D is called directly from B, then clearly
B’s frame will already be on the stack. How else could D be called? It is not visible in A or E,
because it is nested inside of B. A moment’s thought makes clear that it is only when control
enters B (placing B’s frame on the stack) that D comes into view. It can therefore be called by C,
or by any other routine (not shown) that is nested inside C or D, but only because these are also
within B.

CALLING SEQUENCES
Maintenance of the subroutine call stack is the responsibility of the calling sequence—the code
executed by the caller immediately before and after a subroutine call—and of the prologue (code
executed at the beginning) and epilogue (code executed at the end) of the subroutine itself.
Sometimes the term “calling sequence” is used to refer to the combined operations of the caller,
the prologue, and the epilogue.

Tasks that must be accomplished on the way into a subroutine include passing parameters,
saving the return address, changing the program counter, changing the stack pointer to allocate
space, saving registers (including the frame pointer) that contain important values and that may
be overwritten by the callee, changing the frame pointer to refer to the new frame, and executing
initialization code for any objects in the new frame that require it.

Tasks that must be accomplished on the way out include passing return parameters or function
values, executing finalization code for any local objects that require it, de-allocating the stack
frame (restoring the stack pointer), restoring other saved registers (including the frame pointer),
and restoring the program counter. Some of these tasks (e.g., passing parameters) must be
performed by the caller, because they differ from call to call.

Most of the tasks, however, can be performed either by the caller or the callee. In general, we
will save space if the callee does as much work as possible: tasks performed in the callee appear
only once in the target program, but tasks performed in the caller appear at every call site, and
the typical subroutine is called in more than one place.

Maintaining the Static Chain

In languages with nested subroutines, at least part of the work required to maintain the static
chain must be performed by the caller, rather than the callee, because this work depends on the
lexical nesting depth of the caller. The standard approach is for the caller to compute the callee’s
static link and to pass it as an extra, hidden parameter.

Two subcases arise:

1. The callee is nested (directly) inside the caller.

In this case, the callee’s static link should refer to the caller’s frame. The caller therefore passes
its own frame pointer as the callee’s static link.
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2. The callee is k >0 scopes “outward”—closer to the outer level of lexical nesting.
In this case, all scopes that surround the callee also surround the caller

(otherwise the callee would not be visible). The caller dereferences its own

static link k times and passes the result as the callee’s static link.

A Typical Calling Sequence

The stack pointer (sp) points to the first unused location on the stack (or the

last used location, depending on the compiler and machine). The frame pointer (fp) points to a
location near the bottom of the frame. Space for all arguments is reserved in the stack, even if the
compiler passes some of them in registers (the callee will need a place to save them if it calls a
nested routine).

To maintain this stack layout, the calling sequence might operate as follows.

Argnments
to called

routines

Temporaries

Local » Current frame

Direction of stack growth :
variables

[lower addresses)

Saved regs.,
static link

Saved fp

Return address

o
{Arguments
from caller)

l_ Previous (calling)
frame

L

Figure 8.2 A typical stack frame. Though we draw it growing upward on the page, the stack
actually grows downward toward lower addresses on most machines. Arguments are accessed
at positive offsets from the fp. Local varables and temporaries are accessed at negative offsets
from the fp. Arguments 1o be passed to called routines are assembled at the top of the frame,
using positive offsets from the sp.

The caller

1. saves any caller-saves registers whose values will be needed after the call

2. computes the values of arguments and moves them into the stack or registers

3. computes the static link (if this is a language with nested subroutines), and passes it as an
extra, hidden argument
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4. uses a special subroutine call instruction to jump to the subroutine, simultaneously passing the
return address on the stack or in a register

In its prologue, the callee

1. allocates a frame by subtracting an appropriate constant from the sp

2. saves the old frame pointer into the stack, and assigns it an appropriate new value

3. saves any callee-saves registers that may be overwritten by the current routine (including the
static link and return address, if they were passed in registers)

After the subroutine has completed, the epilogue

1. moves the return value (if any) into a register or a reserved location in the stack
2. restores callee-saves registers if needed

3. restores the fp and the sp

4. jumps back to the return address

Finally, the caller
1. moves the return value to wherever it is needed
2. restores caller-saves registers if needed

Special-Case Optimizations

Many parts of the calling sequence, prologue, and epilogue can be omitted in common cases. If
the hardware passes the return address in a register, then a leaf routine (a subroutine that makes
no additional calls before returning) can simply leave it there; it does not need to save it in the
stack. Likewise it need not save the static link or any caller-saves registers.

A subroutine with no local variables and nothing to save or restore may not

even need a stack frame on a RISC machine. The simplest subroutines (e.g.,

library routines to compute the standard mathematical functions) may not touch memory at all,
except to fetch instructions: they may take their arguments in registers, compute entirely in
(caller-saves) registers, call no other routines, and return their results in registers. As a result they
may be extremely fast.

Displays

One disadvantage of static chains is that access to an object in a scope k levels out requires that
the static chain be dereferenced k times. If a local object can be loaded into a register with a
single (displacement mode) memory access, an object k levels out will require k + 1 memory
accesses. This number can be reduced to a constant by use of a display.

Case Studies: C on the MIPS; Pascal on the x86
Calling sequences differ significantly from machine to machine and even compiler to compiler
(though typically a hardware manufacturer publishes a suggested set of conventions for a given
architecture, to promote interoperability among program components produced by different
compilers). Some of the most significant differences can be found in a comparison of CISC and
RISC conventions.

e Compilers for CISC machines tend to pass arguments on the stack; compilers for RISC

machines tend to pass arguments in registers.
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e Compilers for CISC machines usually dedicate a register to the frame pointer; compilers
for RISC machines often do not.

Compilers for CISC machines often rely on special-purpose instructions to Implement
parts of the calling sequence; available instructions on a RISC machines are typically
much simpler.

In-Line Expansion

As an alternative to stack-based calling conventions, many language implementations allow
certain subroutines to be expanded in-line at the point of call. A copy of the “called” routine
becomes a part of the “caller”; no actual subroutine call occurs.

In-line expansion avoids a variety of overheads, including space allocation, branch delays from
the call and return, maintaining the static chain or display, and (often) saving and restoring
registers.

It also allows the compiler to perform code improvements such as global register allocation,
instruction scheduling, and common sub expression elimination across the boundaries between
subroutines, something that most compilers can’t do otherwise.

QUESTION BANK

1. What is a subroutine calling sequence? What does it do? What is meant by the subroutine
prologue and epilogue?

2. How do calling sequences typically differ in CISC and RISC compilers?

3. Describe how to maintain the static chain during a subroutine call.

4. What is a display? How does it differ from a static chain?

5. What are the purposes of the stack pointer and frame pointer registers? Why does a subroutine
often need both?

6. Why do RISC machines typically pass subroutine parameters in registers rather than on the
stack?

7. List the optimizations that can be made to the subroutine calling sequence in important special
cases (e.g., leaf routines).

8. How does an in-line subroutine differ from a macro?

9. Under what circumstances is it desirable to expand a subroutine in-line?

PARAMETER PASSING
Most subroutines are parameterized: they take arguments that control certain aspects of their
behavior, or specify the data on which they are to operate.
Parameter names that appear in the declaration of a subroutine are known
as formal parameters.
Variables and expressions that are passed to a subroutine in a particular call are known as actual
parameters.

Most languages use a prefix notation for calls to user-defined subroutines, with the subroutine
name followed by a parenthesized argument list. Lisp places the function name inside the
parentheses, as in (max a b). ML allows the programmer to specify that certain names represent
infix operators, which appear between a pair of arguments:
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infixr 8 tothe; (* exponentiation *)
fun x tothe 0 = 1.0
[x tothe n = x * (x tothe(n-1)); (* assume n >=0 *)

The infixr declaration indicates that tothe will be a right-associative binary

infix operator, at precedence level 8 (multiplication and division are at level 7, addition and
subtraction at level 6).

Fortran 90 also allows the programmer to define new infix operators, but it requires their names
to be bracketed with periods (e.g., A .cross. B), and it gives them all the same precedence.
Smalltalk uses infix (or “mixfix’’) notation (without precedence) for all its operations.

Control abstraction in Lisp and Smalltalk

The uniformity of Lisp and Smalltalk syntax makes control abstraction particularly effective:
user-defined subroutines (functions in Lisp, “messages” in Smalltalk) use the same style of
syntax as built-in operations. As an example, consider

if. . . then ... else:

if a > b then max :=a else max :=b; (* Pascal *)
(if (> a b) (setf max a) (setf max b)) ; Lisp
(a>b) ifTrue: [max <- a] ifFalse: [max <- b]. "Smalltalk"

In Pascal or C it is clear that if. . . then . . . else is a built-in language construct: it does not look
like a subroutine call.

In Lisp and Smalltalk, on the other hand, the analogous conditional constructs are syntactically
indistinguishable from user-defined operations. They are in fact defined in terms of simpler
concepts, rather than being built in, though they require a special mechanism to evaluate their
arguments in normal, rather than applicative, order

Parameter Modes

Suppose for the moment that x is a global variable in a language with a value model of variables,
and that we wish to pass x as a parameter to subroutine p:

p(x);

From an implementation point of view, we have two principal alternatives: we may provide p
with a copy of x’s value, or we may provide it with x’s address.

The two most common parameter-passing modes, called call-by-value and callby- reference, are
designed to reflect these implementations.

With value parameters, each actual parameter is assigned into the corresponding formal
parameter when a subroutine is called; from then on, the two are independent.

With reference parameters, each formal parameter introduces, within the body of the
subroutine, a new name for the corresponding actual parameter.
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If the actual parameter is also visible within the subroutine under its original name (as will
generally be the case if it is declared in a surrounding scope), then the two names are aliases for
the same object, and changes made through one will be visible through the other. In most
languages

an actual parameter that is to be passed by reference must be an I-value; it cannot be the result of
an arithmetic operation, or any other value without an address.

As a simple example, consider the following pseudocode:

X @ integer — — global
procedure foo(y : integer)
y:=3

print x

X =2
foo(x)
print x

If y is passed to foo by value, then the assignment inside foo has no visible effect— vy is
private to the subroutine—and the program prints 2 twice.

If y is passed to foo by reference, then the assignment inside foo changes x— is just a
local name for x—and the program prints 3 twice.

If the purpose of call-by-reference is to allow the called routine to modify the actual

parameter, we can achieve a similar effect using call-by-value/result, a mode first introduced
in Algol W.

Like call-by-value, call-by-value/result copies the actual parameter into the formal parameter
at the beginning of subroutine execution.

Unlike call-by-value, it also copies the formal parameter back into the actual parameter when
the subroutine returns.

In the psuedocode given above - value/result would copy result x into y at the beginning of
foo, and y into x at the end of foo.

Because foo accesses x directly in-between, the program’s visible behavior would be
different than it was with call-by-reference: the assignment of 3 into y would not affect x
until after the inner print statement, so the program would print 2 and then 3.

In Pascal, parameters are passed by value by default; they are passed by reference if preceded
by the keyword var in their subroutine header’s formal parameter list.

Parameters in C are always passed by value, though the effect for arrays is unusual: because
of the interoperability of arrays and pointers in C, what is passed by value is a pointer;
changes to array elements accessed through this pointer are visible to the caller.

To allow a called routine to modify a variable other than an array in the caller’s scope, the C
programmer must pass the address of the variable explicitly:
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void swap(int *a, int *b) { intt=*a; *a="*b; *b =1t; }

swap(&vl, &v2);

Fortran passes all parameters by reference, but does not require that every actual parameter
be an I-value. If a built-up expression appears in an argument list, the compiler creates a
temporary variable to hold the value, and passes this variable by reference.

A Fortran subroutine that needs to modify the values of its formal parameters without
modifying its actual parameters must copy the values
into local variables, and modify those instead.

Call-by-Sharing

Call-by-value and call-by-reference make the most sense in a language with a value model of
variables: they determine whether we copy the

variable or pass an alias for it. Neither option really makes sense in a language like Smalltalk,
Lisp, ML, or Clu, in which a variable is already a reference.

Here it is most natural simply to pass the reference itself, and let the actual and formal
parameters refer to the same object. Clu calls this

mode call-by-sharing. It is different from call-by-value because, although we do copy the
actual parameter into the formal parameter, both of them are references; if we modify the
object to which the formal parameter refers, the program will be able to see those changes
through the actual parameter after the subroutine returns.

Call-by-sharing is also different from call-by-reference, because although the called routine
can change the value of the object to which the actual parameter refers, it cannot change the
identity of that object.

The Purpose of Call-by-Reference In a language that provides both value and reference
parameters (e.g., Pascal orModula), there are two principal reasons why the programmer
might choose one over the other. = First, if the called routine is supposed to change the
value of an actual parameter (argument), then the programmer must pass the parameter by
reference. Conversely, to ensure that the called routine cannot modify the argument, the
programmer can pass the parameter by value.

->Second, the implementation of value parameters requires copying actuals to formals, a
potentially time-consuming operation when arguments are large. Reference parameters can
be implemented simply by passing an address

EXCEPTION HANDLING.

An exception can be defined as an unexpected—or at least unusual—condition that arises
during program execution, and that cannot easily be handled in the local context. It may be
detected automatically by the language implementation, or the program may raise it
explicitly. The most common exceptions are various sorts of run-time errors. In an 1/0
library, for example, an input routine may encounter the end of its file before it can read a
requested value, or it may find
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punctuation marks or letters on the input when it is expecting digits. To cope with such errors
without an exception-handling mechanism, the programmer has basically three options, none
of which is entirely satisfactory:

1. “Invent” a value that can be used by the caller when a real value could not be returned.
2. Return an explicit “status” value to the caller, who must inspect it after every call. The
status may be written into an extra, explicit parameter, stored in a global variable, or encoded
as otherwise invalid bit patterns of a function’s regular return value.
3. Rely on the caller to pass a closure (in languages that support them) for an error-handling
routine that the normal routine can call when it runs into trouble. The first of these options is
fine in certain cases, but does not work in the general case. Options 2 and 3 tend to clutter up
the program, and impose overhead that we should like to avoid in the common case. The tests
in option 2 are particularly offensive: they obscure the normal flow of events in the common
case. Because they are so tedious and repetitive, they are also a common source of errors; one
can easily forget a needed test. Exception-handling mechanisms address these issues by
moving error-checking code “out of line,” allowing the normal case to be specified simply,
and arranging for control to branch to a handler when appropriate. In many languages,
dynamic semantic errors automatically result in exceptions, which the program can then
catch. The programmer can also define additional, application-specific exceptions. Examples
of predefined exceptions include arithmetic overflow, division by zero, end-of-file on input,
subscript and subrange errors, and null pointer dereference. The rationale for defining these
as exceptions (rather than as fatal errors) is that they may arise in certain valid programs.
Some other dynamic errors (e.g., return from a subroutine that has not yet designated a return
value) are still fatal in most languages. In C++ and Common Lisp, exceptions are all
programmer defined. In PHP, the set_error_handler function can be used to turn built-in
semantic errors into ordinary exceptions. In Ada, some of the predefined exceptions can be
suppressed by means of a pragma. If a subroutine raises an exception but does not catch it
internally, it may “return” in an unexpected way. This possibility is an important part of the
routine’s interface to the rest of the program. Consequently, several languages, including Clu,
Modula-3, C++, and Java, include in each subroutine header a list of the exceptions that may
propagate out of the routine. This list is mandatory in Modula-3: it is a run-time error if an
exception arises that does not appear in the header, but is not caught internally. The list is
optional in C++: if it appears, the semantics are the same as in Modula-3; if it is omitted, all
exceptions are permitted to propagate. Java adopts an intermediate approach: it segregates its
exceptions into “checked” and “unchecked” categories. Checked exceptions must be declared
in subroutine headers; unchecked exceptions need not. Unchecked exceptions are typically
run-time errors that most programs will want to be fatal (e.g., subscript out of bounds)—and
that would therefore be a nuisance to declare in every function—but that a highly robust
program may want to catch if they occur in library routines.

Exception Propagation

In most languages, a block of code can have a list of exception handlers. In C++:

try { // try to read from file

/I potentially complicated sequence of operations
I/ involving many calls to stream 1/O routines
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} catch(end_of file) {

} catch(io_error e) {
I/l handler for any io_error other than end_of file

Y catch(...) {

I/ handler for any exception not previously named
/I (in this case, the triple-dot ellipsis is a valid C++ token;
/I it does not indicate missing code)

¥

When an exception arises, the handlers are examined in order; control is transferred to the
first one that matches the exception. In C++, a handler matches if it names a class from
which the exception is derived, or if it is a catch-all (...). In the example here, let us assume
that end_of file is a subclass of io_error. Then an end_of_file exception, if it arises, will be
handled by the first of the three catch clauses. All other 1/O errors will be caught by the
second; all non-1/O errors will be caught by the third. If the last clause were missing, non-1/O
errors would continue to propagate up the dynamic chain. _ An exception that is declared in a
recursive subroutine will be caught by the innermost handler for that exception at run time. If
an exception propagates out of the scope inwhich it was declared, it can no longer be named
by a handler, and thus can be caught only by a “catch-all” handler. In a language with
concurrency, one must consider what will happen if an exception is not handled at the
outermost level of a concurrent thread of control. InModula-3, the entire programterminates
abnormally; in Ada and Java, the affected thread terminates quietly; in C# the behavior is
implementation defined.

Handlers on Expressions

In an expression-oriented language such as ML or Common Lisp, an exception handler is
attached to an expression, rather than to a statement. Since execution of the handler replaces
the unfinished portion of the protected code when an exception occurs, a handler attached to
an expression must provide a value for the expression.

Implementation of Exceptions

The most obvious implementation for exceptions maintains a linked-list stack of handlers.
When control enters a protected block, the handler for that block is added to the head of the
list. When an exception arises, either implicitly or as a result of a raise statement, the
language run-time system pops the innermost handler off the list and calls it. The handler
begins by checking to see if it matches the exception that occurred; if not, it simply reraises
it:

if exception matches duplicate in set

else

reraise exception

To implement propagation back down the dynamic chain, each subroutine has an implicit
handler that performs the work of the subroutine epilogue code and then reraises the
exception. _
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If a protected block of code has handlers for several different exceptions, they

Multiple exceptions per

handler

are implemented as a single handler containing a multiarm if statement:
if exception matches end of file

elsif exception matches io error

else

... —— “catch-all” handler _

The problem with this implementation is that it incurs run-time overhead in the common
case. Every protected block and every subroutine begins with code to push a handler onto the
handler list, and ends with code to pop it back off the list. We can usually do better.

The only real purpose of the handler list is to determine which handler is active. Since blocks
of source code tend to translate into contiguous blocks of machine language instructions, we
can capture the correspondence between handlers and protected blocks in the form of a table
generated at compile time. Each entry in the table contains two fields: the starting address of
a block of code and the address of the corresponding handler. The table is sorted on the first
field.When an exception occurs, the language run-time system performs binary search in the
table, using the program counter as key, to find the handler for the current block. If that
handler reraises the exception, the process repeats: handlers themselves are blocks of code,
and can be found in the table. The only subtlety arises in the case of the implicit handlers
associated with propagation out of subroutines: such a handler must ensure that the reraise
code uses the return address of the subroutine, rather than the current program counter, as the
key for table lookup.

Coroutines

Given an understanding of the layout of the run-time stack, we can now consider the
implementation of more general control abstractions coroutines in particular.

Like a continuation, a coroutine is represented by a closure (a code address and a referencing
environment), into which we can jump by means of a nonlocal goto, in this case a special
operation known as transfer. The principal difference between the two abstractions is that a
continuation is a constant it does not change once created while a coroutine changes every
time it runs. When we goto a continuation, our old program counter is lost, unless we
explicitly create a new continuation to hold it.When we transfer from one coroutine to
another, our old program counter is saved: the coroutine we are leaving is updated to reflect
it. Thus, if we performa goto into the same continuationmultiple times, each jump will start at
precisely the same location, but if we performa transfer into the same coroutine multiple
times, each jump will take up where the previous one left off.

Stack Allocation
Because they are concurrent (i.e., simultaneously started but not completed), coroutines
cannot share a single stack: their subroutine calls and returns, taken as a whole, do not occur
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in last-in-first-out order. If each coroutine is declared at the outermost level of lexical nesting
(as required in Modula-2), then their stacks are entirely disjoint: the only objects they share
are global, and thus statically allocated.

Most operating systems make it easy to allocate one stack, and to increase its portion of the
virtual address space as necessary during execution. It is usually not easy to allocate an
arbitrary number of such stacks; space for coroutines is something of an implementation
challenge.

The simplest solution is to give each coroutine a fixed amount of statically allocated stack
space.

L

Figure 8.6 A cactus stack. Each branch to the side represents the creation of a coroutine
(A, B, C,and D). The static nesting of blodks is shown at right. Static links are shown with armows.
Crynarnic links are indicated simply by vertical arrangement: each routine has called the one abowve
it. (Coroutine B, for example, was created by fhe main program, M. B in turn called subroutine
5 and created coroutine D)

This approach is adopted inModula-2, which requires the programmer

to specify the size and location of the stack when initializing a coroutine.

It is a run-time error for the coroutine to need additional space. Some Modula-2
implementations catch the overflow and halt with an error message; others display abnormal
behavior. If the coroutine uses less space than it is given, the excess is simply wasted.

If stack frames are allocated from the heap, as they are in most Lisp and Scheme
implementations, then the problems of overflow and internal fragmentation are avoided. At
the same time, the overhead of each subroutine call is significantly increased. An
intermediate option is to allocate the stack in large, fixed-size “chunks.” At each call, the
subroutine calling sequence checks to see whether there is sufficient space in the current
chunk to hold the frame of the called routine.
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If not, another chunk is allocated and the frame is put there instead. At each subroutine
return, the epilogue code checks to see whether the current frame is the last one in its chunk.
If so, the chunk is returned to a “free chunk” pool.

MODULE -4

Functional and Logic Languages

>

Functional and logic programming languages are also called declarative languages;
programs in these languages are said to describe (declaratively) what to do and not
(operationally) how to do it.

This is in contrast to imperative languages which are based on models of the underlying
machine; programs written in imperative languages can be thus more directly compiled to
efficient machine code, but reasoning and program transformations are comparatively
difficult.

Declarative programming languages have been developed since the 1970s, but their roots
can be traced to the 1930s when mathematicians and logicians began to study the theory
of computability.

The functional programming community has focused on the concept of the
mathematical function as a value-mapping entity; since such a function is typically
defined by a set of equations, this yields a style of “programming with recursive
equations”.

The task of the programmer is to construct a wanted result value from the given argument
values by some basic constructs with a simple mathematical interpretation;

Functional languages have also considerably contributed to the theory of type systems by
concepts such as polymorphic functions (functions applicable to arguments of different
types) and functors (parameterized program modules that take modules as arguments and
return modules as results) which yielded the idea of generic programming.

Logic programming is an outcome of research in automated theorem proving. In 1965,
Robinson published the resolution method as an efficient decision procedure for logic
formulas written in a subset of first-order predicate logic called Horn clause logic.

While not every logic formula can be expressed in this language, it is sufficiently rich to
serve as the basis of a rule-based programming style where the task of the programmer is
to construct a relation between values: those given by the user are considered as input
from which the system computes the other ones as output.

In the early 1970s, Kowalski elaborated the theory of logic programming with
Colmerauer producing the first implementation of the programming language Prolog
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(Programming in Logic). The resolution mechanism was extended by methods for
“constraint solving” which brought mathematics in closer contact to logic programming.

In the 1990s, new developments have started to blur the distinction between functional
programming and logic programming leading to functional-logic programming: here a
logic formula also has a return value or, vice versa, a function call is also a goal which
has to be satisfied by functional programming and “resolution” for logic programming
and thus enhances the expressiveness of the declarative style of programming.

LISP has traditionally been popular for the manipulation of symbolic data, in the field of
Acrtificial Intelligence.

Logic languages are widely used for formal specifications and theorem proving. Prolog
is the most common logic language.

1. Functional Programming

Functional programming defines the outputs of a program as a mathematical function of
the inputs, with no notion of internal state, and thus no side effects.
Miranda, Haskell, pH, Sisal, and Single Assignment C are purely functional.
Functional languages provide a number of features that are often missing in imperative
languages, including:
o First-class function values and higher-order functions
Extensive polymorphism
List types and operators
Structured function returns
Constructors (aggregates) for structured objects
o Garbage collection
a first-class value as one that can be passed as a parameter, returned from a subroutine, or
assigned into a variable.
A higher order function takes a function as an argument, or returns a function as a result.
Polymorphism is important in functional languages because it allows a function to be
used on as general a class of arguments as possible.
Lists are important in functional languages because they have a natural recursive
definition.

Applications of Functional Lanquages

Knowledge representation

Machine learning

Natural language processing
Modeling of speech and vision
Scheme is used to teach introductory

2. Lambda calculus
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Mathematically, a function is a single-valued mapping: it associates every element in one
set (the domain) with (at most) one element in another set (the range).

In conventional notation, we indicate the domain and range of, say, the square root
function by writing

sqrt: R ——R
We can also define functions using conventional set notation:

sqrt={(x,y) ERXR|y>0Ax=Vy?}
This notation is non constructive: it doesn’t tell us how to compute square roots.
Church designed the lambda calculus to address this limitation.
So Lambda calculus is a framework developed by Alonzo Church in 1930s to study
computations with functions.

Lambda calculus is a constructive notation for function definitions.

Any computable function can be written as a lambda expression.

Computation amounts to macro substitution of arguments into the function definition,

followed by reduction to simplest form via simple and mechanical rewrite rules.

In Lambda calculus

o Function creation — Church introduced the notation Ax.E to denote a function in

which ‘x’ is a formal argument and ‘E’ is the functional body. These functions
can be of without names and single arguments.
Function application — Church used the notation E;.E; to denote the application
of function E;to actual argument E;. And all the functions are on single
argument.

Syntax of Lambda Calculus
e Lamdba calculus includes three different types of expressions, i.e.,

E :: = x(variables)
| E1 E2(function application)
| Ax.E(function creation)

Where Ax.E is called Lambda abstraction and E is known as A-expressions.

Evaluating Lambda Calculus
e Pure lambda calculus has no built-in functions. Let us evaluate the following expression

(+(*56) (*83))
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e Here, we can’t start with '+' because it only operates on numbers. There are two
reducible expressions: (* 5 6) and (* 8 3).
e We can reduce either one first. For example —
(+(*56) (*83)
(+30(*83))
(+30 24)
=54

B-reduction Rule

e We need a reduction rule to handle As

Ax.*2x)4
(*24)
=8

This is called B-reduction.

3. Overview of Scheme

e Most Scheme implementations employ an interpreter that runs a “read-eval-print” loop.
e The interpreter repeatedly reads an expression from standard input, evaluates that
expression, and prints the resulting value.
If the user types
(+34)
the interpreter will print 7
If the user types 7 the interpreter will also print 7
most Scheme implementations provide a load function that reads (and evaluates) input
from a file:
(load "my_Scheme_program')
Scheme (like Lisp) uses Cambridge Polish notation for expressions.
Parentheses indicate a function application.
The first expression inside the left parenthesis indicates the function; the remaining
expressions are its arguments.
Suppose the user types
((+34))
When it sees the inner set of parentheses, the interpreter will call the  function +,
passing 3 and 4 as arguments.
Because of the outer set of parentheses, it will then attempt to call 7 as a zero-argument
function—a run-time error:
eval: 7 is not a procedure
Unlike all other programming languages, extra parentheses change the semantics of
Lisp/Scheme programs.
(+ 3 4) evaluates to 7
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((+ 3 4)) evaluates to error
One can prevent the Scheme interpreter from evaluating a parenthesized expression by
quoting it:

(quote (+ 3 4)) evaluates to (+ 3 4)

Here the result is a three-element list. Quoting is specified with a special shorthand
notation consisting of a leading single quote mark:

’(+ 3 4) evaluates to (+ 3 4)

User-defined functions can implement their own type checks using predefined type
predicate functions:
o (boolean? x) ; is x a Boolean?

(char? x) ; is X a character?

(string? x) ;  is x astring?

(symbol? x) ; is x a symbol?

(number? x) ; is x a number?

(pair? x) ; IS X a pair?

(list? x) ; is X a (proper) list?

A symbol in Scheme is comparable to what other languages call an identifier.
Identifiers are permitted to contain a wide variety of punctuation marks:

(symbol? *x$_%:&=>*!) evaluates to #t
The symbol #t represents the Boolean value true. False is represented by #f. Note the use
of quote (’); the symbol begins with x.
To create a function in Scheme one evaluates a lambda expression:

(lambda (x) (* x X)) is a function

((lambda (x) (* x x)) 3) ==9

The first “argument” to lambda is a list of formal parameters for the function (in this case
the single parameter x). The remaining “arguments” constitute the body of the function.
A lambda expression does not give its function a name; this can be done using let or
define.

Function evaluation: When a function is called, the language implementation restores the
referencing environment that was in effect when the lambda expression was evaluated.

It then augments this environment with bindings for the formal parameters and evaluates
the expressions of the function body in order.

The value of the last such expression becomes the value returned by the function:

((lambda (x) (* x x)) 3) ==9
Example

(define min (lambda (a b) (if (< a b) a b)))
The expression (min 123 456) will evaluate to 123;
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Simple conditional expressions can be written using if:
(if(<23)45)==4
e The implementation of if checks to see whether the first argument evaluates to #t.
e |If so, it returns the value of the second argument , without evaluating the third argument.
e Otherwise it returns the value of the third argument, without evaluating the second.

Bindings

e Names can be bound to values by introducing a nested scope:
(let ((@ 3)
(b 4)
(square (lambda (x) (* x x)))
(plus +))
(sqrt (plus (square a) (square b)))) ==5.0
The special form let takes two or more arguments.
The first of these is a list of pairs. In each pair, the first element is a name and the second
is the value that the name is to represent within the remaining arguments to let.
Remaining arguments are then evaluated in order; the value of the construct as a whole is
the value of the final argument.

Lists and Numbers

e Like all Lisp dialects, Scheme provides functions to manipulate lists.
e The three most important are
o car, which returns the head of a list,
(car’(234))==2
o cdr, which returns the rest of the list (everything after the head),
(cdr’(234))==(34)
o cons, which joins a head to the rest of a list.
(cons2’(34))==(234)

Equality Testing and Searching

Scheme provides several different equality-testing functions.
For numerical comparisons, = performs type conversions where necessary (e.g., to
compare an integer and a floating-point number).
For general-purpose use,

* eqv? performs a shallow comparison, while

» equal? performs a deep (recursive) comparison.
The eq? function also performs a shallow comparison, and may be cheaper than eqv? in
certain circumstances
To search for elements in lists, Scheme provides two sets of functions, each of which has
variants corresponding to the three general-purpose equality predicates.
The functions memqg, memv, and member take an element and a list as argument, and
return the longest suffix of the list beginning with the element:
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(memq ’z’(xy z wW)) == (zw)
(memv °(z) *(X y (z) w)) == #f ;(eq?°(2) (2)) ==#f
(member ’(z) ’(xy (z) w)) == ((z) W) ; (equal? ’(z) ’(z)) ==#t
e The memg, memv, and member functions perform their comparisons using eq?, eqv?, and
equal?, respectively.
e They return #f if the desired element is not found.

Control Flow and Assignment

e if.. . elsif... elseis represented with cond
(cond

((<32)1)

((<43)2)

(else 3)) ==3
The arguments to cond are pairs.
The value of the overall expression is the value of the second element of the first pair in
which the first element evaluates to #t.
If none of the first elements evaluates to #t, then the overall value is #f.
The symbol else is permitted only as the first element of the last pair of the construct.

Assignment

e Assignment employs the special form set! and the functions set-car! and set-cdr!:
(let ((x 2) ; initialize x to 2
(1’(ab))) ; Initialize 1 to (a b)
(set! x 3) ; assign X the value 3
(set-car! 1°(c d)) ; assign head of 1 the value (c d)
(set-cdr! 1 ’(e)) ; assign rest of 1 the value (e)
o X ==3
o ==((cd)e)
e The return values of the various varieties of set! are implementation dependent.

Seguencing
e Sequencing uses the special form begin:
(begin
(display "hello ™)
(display “world"))
Iteration

e lteration uses the special form do and the function for-each:

(define iter-fib (lambda (n)
(do((i0(+i1))
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(@a0b)
(b1(+ab)))
(Fin)b)
(display b) ; body of loop
(display " ™)))) ; body of loop

o (do ((10(+1i1)) :The first argument to do is a list of triples, each of which specifies a
new variable, an initial value for that variable, and an expression to be evaluated and
placed in a fresh instance of the variable at the end of each iteration.

o (a0b): The second argument to do is a pair that specifies the termination condition
and the expression to be returned.

e The function for-each takes as argument a function and a sequence of lists.

e There must be as many lists as the function takes arguments, and the lists must all be of
the same length.

e For-each calls its function argument repeatedly, passing successive sets of arguments
from the lists.

(for-each (lambda (a b) (display (* a b)) (newline))

(24 6)
'(357))

Programs as L ists

e A program in Scheme takes the form of a list. ie., Lisp and Scheme are homoiconic—
self-representing.

e A parenthesized string of symbols (in which parentheses are balanced) is called an S-
expression regardless of whether we think of it as a program or as a list.
An unevaluated program is a list, and can be constructed, deconstructed, and manipulated
with all the usual list functions.

Evaluating data as code:

e Scheme provides an eval function that can be used to evaluate a list that has been created
as a data structure:
(define compose
(lambda (f g)
(lambda (x) (f (9 x)))))
((compose car cdr) (1 2 3))==2
e Compose takes as arguments a pair of functions f and g.
e It returns as result a function that takes as parameter a value X, applies g to it, then
applies f, and finally returns the result.

Eval and Apply

e The functions eval and apply can be defined as mutually recursive.
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When passed a number or a string, eval simply returns that number or string.

When passed a symbol, it looks that symbol up in the specified environment and returns
the value to which it is bound.

When passed a list it checks to see whether the first element of the list is one of a small
number of symbols that name so-called primitive special forms, built into the language
implementation.

When passed a function f and a list of arguments |, apply inspects the internal
representation of f to see whether it is primitive.

If so it invokes the built-in implementation.

Otherwise it retrieves (from the representation of f ) the referencing environment in
which f ’s lambda expression was originally evaluated. To this environment it adds the
names of f ’s parameters, with values taken from 1.

Call this resulting environment e.

Next apply retrieves the list of expressions that make up the body of f .

It passes these expressions, together with e, one at a time to eval.

Finally, apply returns what the eval of the last expression in the body of f returned.

One can choose to evaluate function arguments before passing them to a function, or to
pass them unevaluated.

The former option is called applicative-order evaluation; the latter is called normal-order
evaluation.

Scheme uses applicative order in most cases.

4. Strictness and Lazy Evaluation

Evaluation order can have an effect not only on execution speed, but on program
correctness as well.

A function is said to be strict if it is undefined (fails to terminate, or encounters an error)
when any of its arguments is undefined. Such a function can safely evaluate all its
arguments, so its result will not depend on evaluation order.

A language is said to be strict if it is defined in such a way that functions are always
strict.

If a language always evaluates expressions in applicative order, then every function is
guaranteed to be strict, because whenever an argument is undefined, its evaluation will
fail and so will the function to which it is being passed.

ML and Scheme are strict.

A function is said to be nonstrict if it does not impose this requirement-that is, if it is
sometimes defined even when one of its arguments is not.

A language is said to be nonstrict if it permits the definition of nonstrict functions.

A nonstrict language cannot use applicative order; it must use normal order to avoid
evaluating unneeded arguments.

Miranda and Haskell are nonstrict.

Lazy evaluation gives us the advantage of normal-order evaluation (not evaluating un
needed sub expressions)

Lazy evaluation does not evaluate an expression until its value is actually needed.
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Every argument is tagged internally with a “memo” that indicates its value, if known.
Any attempt to evaluate the argument sets the value in the memo as a side effect, or
returns the value (without recalculating it) if it is already set.

Lazy evaluation is particularly useful for “infinite” data structures.

Lazy evaluation is used for all arguments in Miranda and Haskell.

Normal-order evaluation can be thought of as function evaluation using call-by-name
parameters, lazy evaluation is sometimes said to employ “call-by-need.”

In addition to Miranda and Haskell, call-by-need can be found in the R scripting
language, widely used by statisticians.

The principal problem with lazy evaluation is its behavior in the presence of side effects.
If an argument contains a reference to a variable that may be modified by an assignment,
then the value of the argument will depend on whether it is evaluated before or after the
assignment.

5. 1/0: Streams and Monads

Streams

e One way to avoid I/O side effects is to model input and output as streams- unbounded-
length lists whose elements are generated lazily.
If we model input and output as streams, then a program takes the form

(define output (my_prog input))

When it needs an input value, function my_prog forces evaluation of the car of input, and
passes the cdr on to the rest of the program.
To drive execution, the language implementation repeatedly forces evaluation of the car
of output, prints it, and repeats:

(define driver (lambda (s)
@1f (null? s) *() ; nothing left
(display (car s))
(driver (cdr s)))))
(driver output)

Streams formed the basis of the 1/0 system in early versions of Haskell.
Streams don’t work very well for graphics or random access to files.
They also make it difficult to accommodate 1/O of different kinds

Monads

Recent versions of Haskell employ a general concept known as monads.

Monads are drawn from a branch of mathematics known as category theory.

In Haskell, monads are essentially a clever use of higher-order functions, coupled with a
bit of syntactic sugar, that allow the programmer to chain together a sequence of actions
(function calls) that have to happen in order.
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The power of the idea comes from the ability to carry a hidden, structured value of
arbitrary complexity from one action to the next.

Monads provide a more general solution to the problem of threading mutable state
through a functional program

The 10 monad serves as the central repository for imperative language features-not only
I/O and random numbers, but also mutable global variables and shared-memory
synchronization.

Additional monads (with accessible hidden state) support partial functions and various
container classes (lists and sets).

When coupled with lazy evaluation, monadic containers in turn provide a natural
foundation for backtracking search, nondeterminism, and the functional equivalent of
iterators.

6. Higher-Order Functions

A function is said to be a higher-order function (also called a functional form) if it takes a
function as an argument, or returns a function as a result.
Map function in Scheme: The Scheme version of map takes as argument a function and
a sequence of lists. There must be as many lists as the function takes arguments, and the
lists must all be of the same length.
Map calls its function argument on corresponding sets of elements from the lists:
(map *’(246)°(357))==(62042)
Folding (reduction) in Scheme: Programmers in Scheme (or in ML, Haskell, or other
functional languages) can easily define other higher-order functions.
If we want to be able to “fold” the elements of a list together, using an associative binary
operator:
(define fold (lambda (f i I)
@if (null2 )i ; iiscommonly the identity element for f
(f (car ) (fold fi (cdr 1))))))
Now (fold +0 ’(1 2 3 4 5)) gives us the sum of the first five natural numbers, and (fold *
1°(1234)5)) gives us their product.
One of the most common uses of higher-order functions is to build new functions from
existing ones

(define total (lambda (1) (fold + 0 1)))
(total ’(12345))

(define total-all (lambda (1)
(map total 1)))
(total-all *((12 3 4 5)
(246810)
(36912 15))) == (15 30 45)
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Currying

e A common operation, named Curry, is to replace a multi argument function with a
function that takes a single argument and returns a function that expects the remaining
arguments:

(define curried-plus (lambda (a) (lambda (b) (+ a b))))

((curried-plus 3) 4) ==7

(define plus-3 (curried-plus 3))

(plus-34) ==7
Among other things, currying gives us the ability to pass a “partially applied” function to
a higher-order function.

7. Logic Programming

e Logic programming systems allow the programmer to state a collection of axioms from
which theorems can be proven.
The user of a logic program states a theorem, or goal, and the language implementation
attempts to find a collection of axioms and inference steps (including choices of values
for variables) that together imply the goal.
Of the several existing logic languages, Prolog is by far the most widely used.
In almost all logic languages, axioms are written in a standard form known as a Horn
clause.
A Horn clause consists of a head, or consequent term H, and a body consisting of
terms Bi :

H<—B1,B2,...,Bn

The semantics of this statement are that when the Bi are all true, we can deduce that H is
true as well.
When reading aloud, we say “H, if B1, B2, ..., and Bn.”
Horn clauses can be used to capture most, but not all, logical statements.
In order to derive new statements, a logic programming system combines existing
statements, canceling like terms, through a process known as resolution.
If we know that A and B imply C, for example, and that C implies D, we can deduce that
Aand B imply D:

C—A4 B

D~ C

D—A B
During resolution, free variables may acquire values through unification with
expressions in matching terms

Advantages and Limitations of Logic programming

Advantages
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It can be used to express knowledge in a way that does not depend on the
implementation, making programs more flexible, compressed and understandable

It enables knowledge to be separated from use, ie., the machine architecture can be
changed without changing programs or their underlying code

It can be altered and extended in natural ways to support special forms of knowledge,
such as meta-level or higher order knowledge

It can be used in non-computational disciplines relying on reasoning and precise means
of expression

Limitations

1.
2.

3.

Due to insufficient investment in complementary technologies users were poorly served
In the beginning, poor facilities for supporting arithmetic, types, etc. had a discouraging
effect on the programming community.

There is no adequate way of representing computational concepts found in built-in
mechanisms of state variables

Some programmers always have, and always will prefer operational nature of machine
operated programs

8. Prolog logic programming

Scheme interpreter evaluates functions in the context of a referencing environment in
which other functions and constants have been defined

Prolog interpreter runs in the context of a database of clauses (Horn clauses) that are
assumed to be true.

Each clause is composed of terms, which may be constants, variables, or structures.

A constant is either an atom or a number. A structure can be thought of as either a logical
predicate or a data structure.

Atoms in Prolog are similar to symbols in Lisp. Lexically, an atom looks like an
identifier beginning with a lowercase letter, a sequence of “punctuation” characters, or a
quoted character string:

foo my_ Const + "Hi, Mom’
Numbers resemble the integers and floating-point constants of other programming
languages.
A variable looks like an identifier beginning with an uppercase letter:
Foo My_var X
Variables can be instantiated to arbitrary values at run time as a result of unification.
The scope of every variable is limited to the clause in which it appears.
There are no declarations. As in Lisp, type checking occurs only when a program
attempts to use a value in a particular way at run time.
Structures consist of an atom called the functor and a list of arguments:

rainy(rochester)
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teaches(scott, cs254)

bin_tree(foo, bin_tree(bar, glarch))
Prolog requires the opening parenthesis to come immediately after the functor, with no
intervening space. Arguments can be arbitrary terms: constants, variables, or (nested)
structures.
Internally, a Prolog implementation can represent a structure using Lisp-like cons cells.
The clauses in a Prolog database can be classified as facts or rules, each of which ends
with a period.
A fact is a Horn clause without a right-hand side.

rainy(rochester).
A rule has a right-hand side:

snowy(X) :- rainy(X), cold(X).

The token :- is the implication symbol; the comma indicates “and.”Variables that appear in the
head of a Horn clause are universally quantified: for all X, X is snowy if X is rainy and X
is cold.

It is also possible to write a clause with an empty left-hand side. Such a clause is called a
query, or a goal. Queries do not appear in Prolog programs.

Rather, one builds a database of facts and rules and then initiates execution by giving the
Prolog interpreter a query to be answered.

In most implementations of Prolog, queries are entered with a special ?- implication
symbol.

If we were to type the following:

rainy(seattle).

rainy(rochester).

?- rainy(C).

the Prolog interpreter would respond with
C = seattle
Of course, C = rochester would also be a valid answer, but Prolog will find seattle first,
because it comes first in the database.
If we want to find all possible solutions, we can ask the interpreter to continue by typing
a semicolon:
C = seattle ;
C = rochester
If we type another semicolon, the interpreter will indicate that no further solutions are
possible:
C = seattle ;
C = rochester ;
No
Resolution and Unification
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The resolution principle, says that if C1 and C2 are Horn clauses and the head of C1
matches one of the terms in the body of C2, then we can replace the term in C2 with the
body of C1. Consider the following example:

takes(jane_doe, his201).

takes(jane_doe, cs254).

takes(ajit_chandra, art302).

takes(ajit_chandra, cs254).

classmates(X, Y) :- takes(X, Z), takes(Y, Z).
If we let X be jane_doe and Z be cs254, we can replace the first term on the right-hand
side of the last clause with the (empty) body of the second clause, yielding the new rule

classmates(jane_doe, Y) :- takes(Y, cs254).
In other words, Y is a classmate of jane_doe if Y takes cs254.
Note that the last rule has a variable (Z) on the right-hand side that does not appear in the
head. Such variables are existentially quantified: for all X and Y, X and Y are classmates
if there exists a class Z that they both take.
The pattern-matching process used to associate X with jane_doe and Z with ¢cs254 is
known as unification.
Variables that are given values as a result of unification are said to be instantiated.
The unification rules for Prolog state that
o A constant unifies only with itself.
o Two structures unify if and only if they have the same functor and the same arity,
and the corresponding arguments unify recursively.
o A variable unifies with anything. If the other thing has a value, then the variable is
instantiated.
If the other thing is an un instantiated variable, then the two variables are associated in
such a way that if either is given a value later, that value will be shared by both.
Unification of structures in Prolog is very much akin to ML’s unification of the types of
formal and actual parameters.
Equality in Prolog is defined in terms of “unifiability.”
The goal =(A, B) succeeds if and only if A and B can be unified.

Like equality checking, list manipulation is a sufficiently common operation in Prolog to
warrant its own notation.

The construct [a, b, c] is syntactic sugar for the structure .(a, .(b, .(c, []))), where [] is the
empty list and . is a built-in cons-like predicate.

Prolog adds an extra convenience, however: an optional vertical bar that delimits the
“tail” of the list.

Using this notation, [a, b, c] could be expressed as [a | [b, c]], [a, b | [c]], or [&, b, ¢ | []]-
One of the interesting things about Prolog resolution is that it does not in general
distinguish between “input” and “output” arguments
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e Thus, given

append([], A, A).
append([H | T], A, [H | L]) :- append(T, A, L).

we can type

?- append([a, b, c], [d, €], L).

L=[ab,cde]

?- append(X, [d, €], [a, b, c, d, €]).

X =[a, b, c]

?- append([a, b, c], Y, [a, b, c, d, €]).

Y =[d, €]

This example highlights the difference between functions and Prolog predicates.

The former have a clear notion of inputs (arguments) and outputs (results); the latter do
not.

Arithmetic

e The usual arithmetic operators are available in Prolog, but they play the role of
predicates, not of functions.
e Thus +(2, 3), which may also be written 2 + 3, is a two-argument structure, not a function
call. In particular, it will not unify with 5:
?-(2+3)=5.
No

e To handle arithmetic, Prolog provides a built-in predicate, is, that unifies its first
argument with the arithmetic value of its second argument:

?-1s(X, 1+2).

X=3

?- Xis 1+2.

X=3 % infix is also ok

?-1+2is 4-1.

No % first argument (1+2) is already instantiated
?-XisY.

ERROR % second argument (YY) must already be instantiated
?-Yis 142, Xis Y.

Y=3

X=3 % Y is instantiated by the time it is needed

Search/Execution Order

e In the realm of formal logic, one can imagine two principal search strategies:
o Start with existing clauses and work forward, attempting to derive the goal. This
strategy is known as forward chaining.
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o Start with the goal and work backward, attempting to “unresolve” it into a set of
preexisting clauses. This strategy is known as backward chaining.
If the number of existing rules is very large, but the number of facts is small, it is possible
for forward chaining to discover a solution more quickly than backward chaining.
In most circumstances, however, backward chaining turns out to be more efficient.
Prolog is defined to use backward chaining. Because resolution is associative and
commutative, a backward chaining theorem prover can limit its search to sequences of
resolutions in which terms on the right-hand side of a clause are unified with the heads of
other clauses one by one in some particular order (e.g., left to right).
The resulting search can be described in terms of a tree of subgoals.
The Prolog interpreter (or program) explores this tree depth first, from left to right.
It starts at the beginning of the database, searching for a rule R whose head can be unified
with the top-level goal.
It then considers the terms in the body of R as subgoals, and attempts to satisfy them,
recursively, left to right.
If at any point a subgoal fails, the interpreter returns to the previous subgoal and attempts
to satisfy it in a different way
The process of returning to previous goals is known as backtracking.
It strongly resembles the control flow of generators in Icon
Whenever a unification operation is “undone” in order to pursue a different path through
the search tree, variables that were given values or associated with one another as
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

Original goal

Success

Candidate clauses

X = seattle 5
Subgoals \ rainy (X) cold(X)

- OR N\ cold(seattle)
fails; backtrack
Candidate clauses rainy(seattle) rainy(rochester) cold(rochester)

X = rochester

Figure: Backtracking search in Prolog
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a result of that unification are returned to their uninstantiated or unassociated state
Space management for backtracking search in Prolog usually follows the single stack
implementation of iterators.
The interpreter pushes a frame onto its stack every time it begins to pursue a new subgoal
G.
If G fails, the frame is popped from the stack and the interpreter begins to backtrack.
If G succeeds, control returns to the “caller”, but G’s frame remains on the stack.
At the top level of the interpreter, a semicolon typed by the user is treated the same as
failure of the most recently satisfied subgoal.
The results of a Prolog program are deterministic and predictable.
Suppose for example that we have a database describing a directed acyclic graph:

edge(a, b). edge(b, c). edge(c, d).

edge(d, e). edge(b, e). edge(d, f).

path(X, X).

path(X, Y) :- edge(Z, Y), path(X, Z).
The last two clauses tell us how to determine whether there is a path from node X to node
Y.
If we were to reverse the order of the terms on the right-hand side of the final clause, then
the Prolog interpreter would search for a node Z that is reachable from X before checking
to see whether there is an edge from Zto Y.

MODULE -5

Object-Oriented Programming

With the development of complicated computer applications, data

abstraction has become essential to software engineering. The abstraction provided by modules
and module types has at least three important benefits:

1. It reduces conceptual load by minimizing the amount of detail that the programmer
must think about at one time.

2. It provides fault containment by preventing the programmer from using a

program component in inappropriate ways, and by limiting the portion of a program’s text in
which a given component can be used, thereby limiting the portion that must be considered when
searching for the cause of a bug.

3. It provides a significant degree of independence among program components,

making it easier to assign their construction to separate individuals, to modify their internal
implementations without changing external code that uses them, or to install them in a library
where they can be used by other programs.

ENCAPSULATION AND INHERITANCE
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Encapsulation mechanisms enable the programmer to group data and the subroutines that operate
on them together in one place, and to hide irrelevant details
from the users of an abstraction.

i) Modules

Scope rules for data hiding were one of the principal innovations of Clu, Modula, Euclid, and
other module-based languages of the 1970s. In Clu and Euclid, the declaration and definition
(header and body) of a module always appear together.

The header clearly states which of the module’s names are to be exported.

If a Euclid module M exports a type T, by default the remainder of the program can

do nothing with objects of type T other than pass them to subroutines exported from M. T is said
to be an opaque type.

In Modula-2, programmers have the option of separating the header and body of a module.

In“internal” modules, the two parts appear together. In an “external” module

(meant for separate compilation), the header appears in one source file and the

body in another. Unfortunately, there is no way to divide the header into public and private parts;
everything in it is public (i.e., exported). The only concession to data hiding is that a type may be
made opaque by listing only its name in the header:

TYPET;

In this case variables of type T can only be assigned, compared for equality, and passed to the
module’s subroutines.

Ada, which also allows the headers and bodies of modules (called packages) to be separated,
eliminates the problems of Modula-2 by allowing the header of a package to be divided into
public and private parts. A type can be exported opaquely by putting its definition in the private
part of the header and simply naming it in the public part:

package foo is -- header

type T is private;

.p;.rivate -- definitions below here are inaccessible to users

type T is ... -- full definition

éﬁd foo;

When the header and body of a module appear in separate files, a change to a module body never

requires us to recompile any of the module’s users. A change to the private part of a module
header may require us to recompile the module’s users, but never requires us to change their
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code. A change to the public part of a header is a change to the module’s interface: it will often
require us to change the code of users.

Because they affect only the visibility of names, static, manager-style modules introduce no
special code generation issues. Storage for variables and other data

inside a module is managed in precisely the same way as storage for data immediately

outside the module. If the module appears in a global scope, then its data can be allocated
statically. If the module appears within a subroutine, then its data can be allocated on the stack,
at known offsets, when the subroutine is called, and reclaimed when it returns.

Module types, as in Euclid, are somewhat more complicated: they allow a module to have an
arbitrary number of instances. The obvious implementation then resembles that of a record. If all
of the data in the module have a statically known size, then each individual datum can be
assigned a static offset within the module’s storage. If the size of some of the data is not known
until run time, then the module’s storage can be divided into fixed-size and variable-size
portions, with a dope vector (descriptor) at the beginning of the fixed-size portion. Instances of
the module can be allocated statically, on the stack, or in the heap, as appropriate.

ii) The “this” Parameter

One additional complication arises for subroutines inside a module.

We could, of course, replicate the code for each subroutine

in each instance of the module, just as we replicate the data. This replication

would be highly wasteful, however, as the copies would vary only in the details

of address computations. A better technique is to create a single instance of each

module subroutine, and to pass that instance, at run time, the address of the storage

of the appropriate module instance. This address takes the form of an extra, hidden first
parameter for every module subroutine. A Euclid call of the form

my_stack.push(x)
is translated as if it were really
push(my_stack, x)

where my_stack is passed by reference. The same translation occurs in object oriented
languages.

iii) Classes
The basic philosophy behind the visibility rules of C++ can be summarized as
follows:

e Any class can limit the visibility of its members. Public members are visible anywhere
the class declaration is in scope. Private members are visible only inside the class’s
methods. Protected members are visible inside methods of the class or its descendants.

A derived class can restrict the visibility of members of a base class, but can never
increase it. Private members of a base class are never visible in a derived class. Protected
and public members of a public base class are protected or public, respectively, in a
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derived class. Protected and public members of a protected base class are protected
members of a derived class. Protected and public members of a private base class are
private members of a derived class.

e A derived class that limits the visibility of members of a base class by declaring that base
class protected or private can restore the visibility of individual members of the base class
by inserting a using declaration in the protected or public portion of the derived class
declaration.

Other object-oriented languages take different approaches to visibility. Eiffel is more flexible
than C++ in the patterns of visibility it can support, but it does not adhere to the first of the C++
principles above. Derived classes in Eiffel can both restrict and increase the visibility of
members of base classes.

Every method (called a feature in Eiffel) can specify its own export status. If the status is
{NONE} then the member is effectively private (called secret in Eiffel). If the status is {ANY}
then the member is effectively public (called generally available in Eiffel).

In the general case the status can be an arbitrary list of class names, in which case the feature is
said to be selectively available to those classes and their descendants only. Any feature inherited
from a base class can be given a new status in a derived class. Java and C# follow C++in the
declaration of public, protected, and private members, but do not provide the protected and
private designations for base classes; a derived class can neither increase nor restrict the
visibility of members of a base class. The protected keyword has a slightly different meaning in
Java than it does in C++: a protected member of a Java class is visible not only within derived
classes, but also within the entire package (namespace) in which the class is declared.

iv) Extending without Inheritance

The desire to extend the functionality to an existing abstraction is one of the principal
motivations for object-oriented programming. Inheritance is the standard mechanism that makes
such extension possible. There are times, however, when inheritance is not an option,
particularly when dealing with pre-existing code. The class one wants to extend may not permit
inheritance, for instance: in Java, it may be labeled final; in C#, it may be sealed. Even if
inheritance is possible in principle, there may be a large body of existing code that uses the
original class name, and it may not be feasible to go back and change all the variable and
parameter declarations to use a new derived type.

For situations like these, C# 3.0 provides extension methods, which give the appearance of
extending an existing class:

static class AddToString {

public static int tolnt(this string s) {
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return int.Parse(s);

}
}

An extension method must be static, and must be declared in a static class.

Its first parameter must be prefixed with the keyword this. The method can then be invoked as if
it were a member of the class of which this is an instance:

int n = myString.tolnt();

INITIALIZATION AND FINALIZATION

Most object-oriented languages provide some sort of special mechanism to initialize an object
automatically at the beginning of its lifetime. When written in the form of a subroutine, this
mechanism is known as a constructor. Though the name might be thought to imply otherwise, a
a constructor does not allocate space; it initializes space that has

already been allocated. A few languages provide a similar destructor mechanism to finalize an
object automatically at the end of its lifetime.

Several important issues arise:

i) Choosing a constructor: An object-oriented language may permit a class to have zero, one, or
many distinct constructors. In the latter case, different constructors may have different names, or
it may be necessary to distinguish among them by number and types of arguments.

i) References and values: If variables are references, then every object must be created
explicitly, and it is easy to ensure that an appropriate constructor is called. If variables are values,
then object creation can happen implicitly as a result of elaboration. In this latter case, the
language must either permit objects to begin their lifetime uninitialized, or it must provide a way
to choose an appropriate constructor for every elaborated object.

iii) Execution _order: When an object of a derived class is created in C++, the compiler
guarantees that the constructors for any base classes will be executed, outermost first, before the
constructor for the derived class. Moreover, if a class has members that are themselves objects of
some class, then the constructors for the members will be called before the constructor for the
object in which they are contained. These rules are a source of considerable syntactic and
semantic complexity: when combined with multiple constructors, elaborated objects, and
multiple inheritance, they can sometimes induce a complicated sequence of nested constructor
invocations, with overload resolution, before control even enters a given scope. Other languages
have simpler rules.
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iv) Garbage collection: Most object-oriented languages provide some sort of constructor
mechanism. Destructors are comparatively rare. Their principal purpose is to facilitate manual
storage reclamation in languages like C++. If the language implementation collects garbage
automatically, then the need for destructors is greatly reduced.

4 ISSUES IN DETAIL

i) Choosing a Constructor

Smalltalk, Eiffel, C++, Java, and C# all allow the programmer to specify more than one
constructor for a given class. In C++, Java, and C#, the constructors behave like overloaded
subroutines: they must be distinguished by their numbers and types of arguments. In Smalltalk
and Eiffel, different constructors can have different names; code that creates an objectmust name
a constructor explicitly. In Eiffel one might say

class COMPLEX

creation

new_cartesian, new_polar
feature {ANY}

X, ¥ : REAL
new_cartesian(x_val, y_val : REAL) is
do

x:=x_val;y:=y val

end

new_polar(rho, theta : REAL) is
do

X :=rho * cos(theta)

y :=rho * sin(theta)

end

-- other public methods

feature {NONE}

-- private methods

end -- class COMPLEX

a, b : COMPLEX

.!.!.b.new_cartesian(o, 1)
a.new_polar(pi/2, 1)

The !! operator is Eiffel’s equivalent of new. Because class COMPLEX specified constructor
(“creator”’) methods, the compiler will insist that every use of !! specify a constructor name and
arguments.
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There is no straightforward analog of this code in C++; the fact that both constructors take two
real arguments means that they could not be distinguished by overloading.

Smalltalk resembles Eiffel in the use of multiple named constructors, but it distinguishes more
sharply between operations that pertain to an individual object and operations that pertain to a
class of objects.

Smalltalk also adopts an anthropomorphic programming model in which every operation is seen
as being executed by some specific object in response to a request (a “message”) from some
other object.

Consider, for example, the standard class named Date. Corresponding to Date is a single object
(call it D) that performs operations on behalf of the class. In particular, it is D that creates new
objects of class Date. Because only objects execute operations (classes don’t), we don’t really
need a name for D; we can simply use the name of the class it represents:

todaysDate <- Date today

This code causes D to execute the today constructor of class Date, and assigns a reference to the
newly created object into a variable named todays Date. So what is the class of D ? It clearly
isn’t Date, because D represents class Date.

Smalltalk says that D is an object (in fact the only object) of the metaclass Date class.

For technical reasons, it is also necessary for Date class to be represented by an object. To avoid
an infinite regression, all objects that represent metaclasses are instances of a single class named
Metaclass.

i1) References and Values

Several object-oriented languages, including Simula, Smalltalk, Python, Ruby, and Java, use a
programming model in which variables refer to objects.

Other languages, including C++, Modula-3, Ada 95, and Oberon, allow a variable to have a
value that is an object.

Eiffel uses a reference model by default, but allows the programmer to specify that certain
classes should be expanded, in which case variables of those classes will use a value model.

In a similar vein, C# uses struct to define types whose variables are values, and class to define
types whose variables are references.

With a reference model for variables every
object is created explicitly, and it is easy to
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ensure that an appropriate constructor is called.

With a value model for variables object creation
can happen implicitly as a result of elaboration.

If a C++ variable of class type foo is declared with no initial value, then the compiler will call
foo’s zero-argument constructor (if no such constructor exists, but other constructors do, then the
declaration is a static semantic error—a call to a nonexistent subroutine):

foo b; // calls foo::foo()

If the programmer wants to call a different constructor, the declaration must specify constructor
arguments to drive overload resolution:

foo b(10, ’x’); // calls foo::foo(int, char)
The most common argument list consists of a single object, of the same or different class:

foo a;
bar b;

foo c(a); // calls foo::foo(foo&)

foo d(b); // calls foo::foo(bar&)
Usually the programmer’s intent is to declare a new object whose initial value is“the same” as
that of the existing object. In this case it is more natural to write

foo a; // calls foo::foo()
bar b; // calls bar::bar()

foo ¢ = a; // calls foo::foo(foo&)
foo d = b; // calls foo::foo(bar&)

In recognition of this intent, a single-argument constructor in C++ is called a copy constructor. It
is important to realize here that the equals sign (=) in these declarations indicates initialization,
not assignment.

The effect is not the same as that of the similar code fragment

foo a, ¢, d; // calls foo::foo() three times
bar b; // calls bar::bar()

¢ = a; // calls foo::operator=(foo &)
d = b; // calls foo::operator=(bar&)
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Here ¢ and d are initialized with the zero-argument constructor, and the later use of the equals
sign indicates assignment, not initialization. The distinction is a common source of confusion in
C++ programs. It arises from the combination of a value model of variables and an insistence
that every elaborated object be initialized by a constructor.

iii) Execution Order

As we have seen, C++ insists that every object be initialized before it can be used.

Moreover, if the object’s class (call it B) is derived from some other class (call it A), C++ insists
on calling an A constructor before calling a B constructor, so that the derived class is guaranteed
never to see its inherited fields in an inconsistent state. When the programmer creates an object
of class B (either via declaration or with a call to new), the creation operation specifies
arguments for a B constructor.

These arguments allow the C++ compiler to resolve overloading when multiple constructors
exist.

But where does the compiler obtain arguments for the A constructor?

Adding them to the creation syntax (as Simula does) would be a clear violation of abstraction.
The answer adopted in C++ is to allow the header of the constructor of a derived class to specify
base class constructor arguments:

foo::foo( foo params ) : bar( bar args)

{

Here foo is derived from bar. The list foo params consists of formal parameters for this particular
foo constructor.

Between the parameter list and the opening brace of the subroutine definition is a “call” to a
constructor for the base class bar.

The arguments to the bar constructor can be arbitrarily complicated expressions involving the
foo parameters. The compiler will arrange to execute the bar constructor before beginning
execution of the foo constructor.

iv) Garbage Collection

When a C++ object is destroyed, the destructor for the derived class is called first, followed by
those of the base class(es), in reverse order of derivation. By far the most common use of
destructors in C++ is manual storage reclamation.

Suppose, for example, that we were to create a list or queue of character-string names:

class name_list_node : public gp_list_node {

char *name; // pointer to the data in a node

public:

name_list_node() {

name = 0; // empty string
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name_list_node(char *n) {

name = new char[strlen(n)+1];

strcpy(name, n); // copy argument into member

}

"name_list node() {

if (name '=0) {

delete[] name; // reclaim space

}

}

o

The destructor in this class serves to reclaim space that was allocated in the heap by the
constructor.

In languages with automatic garbage collection, there is much less need for destructors. In fact,
the entire idea of destruction is suspect in a garbage-collected language, because the programmer
has little or no control over when an object is going to be destroyed. Java and C# allow the
programmer to declare a finalize method that will be called immediately before the garbage
collector reclaims the space for an object, but the feature is not widely used.

DYNAMIC METHOD BINDING

One of the principal consequences of inheritance/type extension is that a derived class D has all
the members—data and subroutines—of its base class C. As long as D does not hide any of the
publicly visible members of C it makes sense to allow an object of class D to be used in any
context that expects an object of class C: anything we might want to do to an object of class C
we can also do to an object of class D. In Ada terminology, a derived class that does not hide any
publicly visible members of its base class is a subtype of that base class.

The ability to use a derived class in a context that expects its base class is called SUBTYPE
POLYMORPHISM.

If we imagine an administrative computing system for a university, we might derive classes
student and

professor from class person:

class person { ...

class student : public person { ...
class professor : public person { ...
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Because both student and professor objects have all the properties of a person
object, we should be able to use them in a person context:

student s;
professor p;

person *x = &S;
person *y = &p;
Moreover a subroutine like

void person::print_mailing_label() { ...

would be polymorphic—capable of accepting arguments of multiple types:
g.print_mailing label();  // 1.e., print_mailing label(s)
p.print_mailing label();  // 1.e., print_mailing label(p)

As with other forms of polymorphism, we depend on the fact that print_mailing_ label uses only
those features of its formal parameter that all actual parameters will have in common.

But now suppose that we have redefined print_mailing_label in each of the two derived classes.
We might, for example, want to encode certain information (student’s year in school, professor’s
home department) in the corner of the label.

Now we have multiple versions of our subroutine—student:: print_mailing_label and
professor::print_mailing_label, rather than the single, polymorphic person::print_mailing_label.
Which version we will get depends on the object:

g.print_mailing label();  // student::print_mailing label(s)
p.print_mailing label();  // professor::print_mailing label(p)

But what about
x->print_mailing labell);  // 77

y->print_mailing label();  // 77

Does the choice of the method to be called depend on the types of the variables x and y, or on
the classes of the objects s and p to which those variables refer?

The first option (use the type of the reference) is
known as static method binding.

CSE DEPARTMENT, NCERC PAMPADY Page 117




The second option (use the class of the object) is
known as dynamic method binding

Dynamic method binding is central to object-oriented programming.

Imagine, for example, that our administrative computing program has created a list of persons
who have overdue library books. The list may contain both students and professors. If we
traverse the list and print a mailing label for each person, dynamic method binding will ensure
that the correct printing routine is called for each individual. In this situation the definitions in
the derived classes are said to override the definition in the base class.

Virtual and Nonvirtual Methods

In Simula, C++, and C#, which use static method binding by default, the programmer can specify
that particular methods should use dynamic binding by labelling them as virtual.

Calls to virtual methods are dispatched to the appropriate implementation at run time, based on
the class of the object, rather than the type of the reference.

In C++ and C#, the keyword virtual prefixes the subroutine declaration:
class person {

public:

virtual void print_mailing_label();

In Simula, virtual methods are listed at the beginning of the class declaration:
CLASS Person;

VIRTUAL: PROCEDURE PrintMailingLabel;
BEGIN

PROCEDURE PrintMailingLabel...
COMMENT body of subroutine

END Person;
Ada 95 adopts a different approach.
Rather than associate dynamic dispatch

with particular methods, the Ada 95 programmer associates it with certain references.

Polymorphism
We have already noted that dynamic method binding introduces polymorphism
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(specifically, subtype polymorphism) into any code that expects a reference to an object of some
base class foo. So long as objects of the derived class support the operations of the base class, the
code will work equally well with references to objects of any class derived from foo.

By declaring a reference parameter to be of class foo, for example, the programmer asserts that
the subroutine uses only the

“foo features” of the parameter, and will work on any object that provides those

features.

MULTIPLE INHERITANCE
At times it can be useful for a derived class to inherit features from more than
one base class. Suppose, for example, that we want our administrative computing system to keep
all students of the same year (freshmen, sophomores, juniors, seniors, nonmatriculated) on some
list. It may then be desirable to derive class student from both person and gp_list_node.

In C++ we can say
class student : public person, public gp_list_node { ...

Now an object of class student will have all the fields and methods of both a person and a
gp_list_node.

The declaration in Eiffel is analogous:

class student
inherit
person
gp_list_node
feature

Multiple inheritance also appears in CLOS and Python. Simula, Smalltalk, Objective-C, Modula-
3, Ada 95, and Oberon have only single inheritance. Java, C#, and Ruby provide a limited, “mix-
in” form of multiple inheritance, in which only one parent class is permitted to have fields.
Multiple inheritance introduces a wealth of semantic and pragmatic issues, which we consider
on the PLP CD.

1) Suppose two parent classes provide a method with the same name. Which one

do we use in the child? Can we access both?

2) Suppose two parent classes are both derived from some common“grandparent”

class. Does the “grandchild” have one copy or two of the grandparent’s fields?

3) Our implementation of single inheritance relies on the fact that the representation
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of an object of the parent class is a prefix of the representation of an object of a derived
class.With multiple inheritance, how can each parent be a prefix of the child?

Multiple inheritance with a common grandparent” is known as REPEATED INHERITANCE.
Repeated inheritance with separate copies of the grandparent is known as REPLICATED
INHERITANCE:; repeated inheritance with a single copy of the grandparent is known as

SHARED INHERITANCE.

Shared inheritance is the default in Eiffel. Replicated inheritance is the default in C++.

Both languages allow the programmer to

obtain the other option when desired.

Much of the complexity disappears if we insist, as Java, C#, or Ada 2005, that
all but one of the parent classes consist of methods only. All three languages call
such a class AN INTERFACE.

SCRIPTING LANGUAGES

All scripting languages are programming languages.

The scripting language is basically a language where instructions are written for a run time
environment.

They do not require the compilation step and are rather interpreted.

It brings new functions to applications and glue complex system together.

A scripting language is a programming language designed for integrating and communicating
with other programming languages.

There are many scripting languages some of them are discussed below:

bash: It is a scripting language to work in the Linux interface. It is a lot easier to use bash
to create scripts than other programming languages. It describes the tools to use and code
in the command line and create useful reusable scripts and conserve documentation for
other people to work with.

Node js: It is a framework to write network applications using JavaScript Corporate
users of Node.js include IBM, LinkedIn, Microsoft, Netflix, PayPal, Yahoo for real-time
web applications.

Ruby: There are a lot of reasons to learn Ruby programming language. Ruby’s flexibility
has allowed developers to create innovative software. It is a scripting language which is
great for web development.

Python: It is easy, free and open source. It supports procedure-oriented programming and
object-oriented programming. Python is an interpreted language with dynamic semantics
and huge lines of code are scripted and is currently the most hyped language among
developers.
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Perl: A scripting language with innovative features to make it different and popular.
Found on all windows and Linux servers. It helps in text manipulation tasks. High traffic
websites that use Perl extensively include priceline.com, IMDB.

Advantages of scripting languages:

Easy learning: The user can learn to code in scripting languages quickly, not much
knowledge of web technology is required.

Fast editing: It is highly efficient with the limited number of data structures and
variables to use.

Interactivity: It helps in adding visualization interfaces and combinations in web pages.
Modern web pages demand the use of scripting languages. To create enhanced web
pages, fascinated visual description which includes background and foreground colors
and so on.

Functionality: There are different libraries which are part of different scripting
languages. They help in creating new applications in web browsers and are different from
normal programming languages.

Application of Scripting Languages:

Scripting languages are used in many  areas:

Scripting languages are used in web applications. It is used in server side as well as client
side. Server side scripting languages are: JavaScript, PHP, Perl etc. and client side
scripting languages are: JavaScript, AJAX, jQuery etc.

Scripting languages are used in system administration. For example: Shell, Perl, Python
scripts etc.

It is used in Games application and Multimedia.

It is used to create plugins and extensions for existing applications.

MODULE -6

CONCURRENCY

Program is said to be concurrent if it may have more than one active execution context—more
than one “thread of control.”

Concurrency has at least three important motivations:

1. To capture the logical structure of a problem. Many programs, particularly servers and

graphical applications, must keep track of more than one largely independent “task™ at the same
time. Often the simplest and most logical way to structure such a program is to represent each
task with a separate thread of control.
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2. To exploit extra processors, for speed. Long a staple of high-end servers and super computers
,multiple processors have recently become ubiquitous in desktop and laptop machines. To use
them effectively, programs must generally be written (or rewritten) with concurrency in mind.

3. To cope with separate physical devices. Applications that run across the Internet or a more
local group of machines are inherently concurrent. Likewise, many embedded applications—the
control systems of a modern automobile, for example—often have separate processors for each
of several devices.

* In general, we use the word concurrent to characterize any system in which two or more tasks
may be underway at the same time.

* Under this definition, coroutines are not concurrent, because at any given time, all but one of
them is stopped at a well-known place.

* A concurrent system is parallel if more than one task can be physically active at once; this
requires more than one processor.

* A parallel system is distributed if its processors are associated with people or devices that are
physically separated from one another in the real world.

Levels of Parallelism

Parallelism arises at every level of a modern computer system. It is comparatively easy to exploit
at the level of circuits and gates, where signals can propagate down thousands of connections at
once. As we move up first to processors and then to the many layers of software that run on top
of them, the granularity of parallelism—the size and complexity of tasks—increases at every
level, and it becomes increasingly difficult to figure out what work should be done by each task
and how tasks should coordinate.

At the next higher level of granularity, so-called vector parallelism is available in programs that
perform operations repeatedly on every element of a very large data set.

Unfortunately, vector parallelism arises in only certain kinds of programs.

General-purpose computing has moved to multicore processors, which require coarser-grain
thread-level parallelism.

Levels of Abstraction

With the spread of thread-level parallelism, different kinds of programmers will need to
understand concurrency at different levels of detail, and use it in different ways.

The simplest, most abstract case will arise when using “black box” parallel libraries.
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At a slightly less abstract level, a programmer may know that certain tasks are mutually
independent. Such tasks can safely execute in parallel

If our tasks are not independent, it may still be possible to run them in parallel if we explicitly
synchronize their interactions. Synchronization serves to eliminate races between threads by
controlling the ways in which their actions can interleave in time.

A race condition occurs whenever two or more threads are “racing” toward points in the code
at which they touch some common object, and the behavior of the system depends on which
thread gets there first.

The most common purpose of synchronization is to make some sequence of instructions, known
as a critical section, appear to be atomic—to happen “all at once” from the point of view of
every other thread.

The most common way to make the sequence atomic is with a mutual exclusion lock, which we
acquire before the first instruction of the sequence and release after the last.

Example : A simple race condition

int zero_count;

public static int foo(int n) {
intrtn=n - 1;

if (rtn == 0) zero_count++;
return rtn;

}

Consider now what may happen when two or more instances of this code run concurrently.

Thread 1
Thread 2
rl = zero_count
r1:=r1 + 1 r1 = zero_count
zero_count :=rl r1:=r1 + 1
zero_count = rl

If the instructions interleave roughly as shown, both threads may load the same value of zero
count, both may increment it by 1, and both may store the (only 1 greater) value back into zero
count. The result may be 1 less than what we expect.
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In general, a race condition occurs whenever two or more threads are “racing” toward points in
the code at which they touch some common object, and the behavior of the system depends on
which thread gets there first.

The Case for Multithreaded Programs

The use of many threads ensures that comparatively fast operations (e.g., display of text) do not
wait for slow operations (e.g., display of large images).Whenever one thread blocks (waits for a
message or 1/0), the implementation automatically switches to a different thread. In a preemptive
thread package, the implementation switches among threads at other times as well (i.e., it
performs a context switch), to prevent any one thread from hogging the CPU. Any reader who
remembers the early, more sequential browsers will appreciate the difference that multithreading
makes in perceived performance and responsiveness.

Multiprocessor Architecture

Single-site (nondistributed) parallel computers can be grouped into two broad categories: * *
1)those in which processors share access to common memory, and

2)those in which they must communicate with messages.

Shared-memory machines are typically referred to as multiprocessors, though occasionally one
hears that term applied to message-based machines as well. A multiprocessor typically occupies
a single chassis, in which the processors share not only memory, but also disks, power supplies,
and a single copy of the operating system in which they must communicate with messages.

From the point of view of language or library implementation, the principal distinction between
shared-memory and message-passing hardware is that messages typically require the active
participation of processors at both ends of the connection: one to send, the other to receive. On a
shared-memory machine, a processor can read and write remote memory without the assistance
of a remote processor. In most cases remote reads and writes use the same interface (i.e., load
and store instructions) as local reads and writes.

Memory Coherence
On a message-passing machine, each processor caches its own memory independently.

On a shared-memory machine, however, caches introduce a serious problem: unless we do
something special, a processor that has cached a particular memory location will not see changes
that are made to that location by other processors This problem—how to keep cached copies of a
memory location consistent with one another—is known as the coherence problem. On bus-
based symmetric machines, the problem is relatively easy to solve: the broadcast nature of the
communication medium allows cache controllers to eavesdrop (snoop) on the memory traffic of
other processors. When a processor needs to write a cache line, it requests an exclusive copy, and
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waits for other processors to invalidate their copies. On a bus the waiting is trivial, and the
natural ordering of messages determines who wins in the event of near-simultaneous requests.
Processors that try to access a line in the wake of invalidation must go back to memory (or to
another processor’s cache) to obtain an up-to-date copy.

Processor & Processor B Processor £

Cache Cache
X:d X:3 Cache

‘ Bus )

Memory
X:3

Figure |2.3 The cache coherence problem for shared-memory multiprocessors, Here pro-
cessors A and B have both read vanable X from memory As a side effect. a copy of X has been
created in the cache of each processor If A now changes X to 4 and B reads X again, how do
we ensure that the result is a 4 and not the still-.cached 31 Similarty, if Z reads X into its cache,
how do we ensure that it obtains the 4 from A's cache instead of the stale 3 from memory?

Supercomputers

Because of the complexity of cache coherence, it is difficult to build large shared memory
machines. Today’s fastest machines are constructed from special high-density, low-power
multicore chips. From a programming language perspective, the special challenge of
supercomputing is to accommodate nonuniform access times and (in most cases) the lack of
hardware support for shared memory across the full machine. Today’s supercomputers are
programmed mostly with message-passing libraries (MPI in particular) and with languages and
libraries in which there is a clear syntactic distinction between local and remote memory access.

CONCURRENT PROGRAMMING FUNDAMENTALS

Within a concurrent program, we will use the term thread to refer to the active entity that the
programmer thinks of as running concurrently with other threads. In most systems, the threads of
a given programare implemented on top of one or more processes provided by the operating
system. OS designers often distinguish between a heavyweight process, which has its own
address space, and a collection of lightweight processes, which may share an address space

We will sometimes use the word task to refer to a well-defined unit of work that must be
performed by some thread. In one common programming idiom, a collection of threads shares a
common “bag of tasks”—a list of work to be done. Each thread repeatedly removes a task from
the bag, performs it, and goes back for another. Sometimes the work of a task entails adding new
tasks to the bag.

1) Communication and Synchronization
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In any concurrent programming model, two of the most crucial issues to be addressed are
communication and synchronization.

= Communication refers to any mechanism that allows one thread to obtain information
produced by another. Communication mechanisms for imperative programs are generally
based on either shared memory or message passing. In a shared-memory programming
model, some or all of a program’s variables are accessible to multiple threads. For a pair
of threads to communicate, one of them writes a value to a variable and the other simply
reads it. In a message-passing programming model, threads have no common state. For a
pair of threads to communicate, one of them must perform an explicit send operation to
transmit data to another.
Synchronization refers to any mechanism that allows the programmer to control the
relative order in which operations occur in different threads. Synchronization is generally
implicit in message-passing models: a message must be sent before it can be received. If
a thread attempts to receive a message that has not yet been sent, it will wait for the
sender to catch up. Synchronization is generally not implicit in shared-memory models:
unless we do something special, a “receiving” thread could read the “old” value of a
variable, before it has been written by the“sender.”

In both shared-memory and message-based programs, synchronization can be implemented
either by spinning (also called busy-waiting) or by blocking.

*In busy-wait synchronization (SPINNING), a thread runs a loop in which it keeps reevaluating
some condition until that condition becomes true.

*In BLOCKING synchronization (also called scheduler-based synchronization), the waiting
thread voluntarily relinquishes its processor to some other thread. Before doing so, it leaves a
note in some data structure associated with the synchronization condition. A thread that makes
the condition true at some point in the future will find the note and take action to make the
blocked thread run again.

2) Languages and Libraries

Thread-level concurrency can be provided to the programmer in the form of explicitly concurrent
languages, compiler-supported extensions to traditional sequential languages, or library packages
outside the language proper. All three options are widely used, though shared-memory languages
are more common at the “low end” (for multicore and small multiprocessor machines), and
message passing libraries are more common at the “high end”(for massively parallel
supercomputers).

3. THREAD CREATION SYNTAX
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Almost every concurrent system allows threads to be created (and destroyed) dynamically.
Syntactic and semantic details vary considerably from one language or library to another, but
most conform to one of six principal options:

=>» co-begin,

=>» parallel loops,

=> launch-at-elaboration,
=> fork (with optional join),
=> implicit receipt, and

=> early reply.

The first two options delimit threads with special control-flow constructs.
The others use syntax resembling (or identical to) subroutines.

Most libraries use fork/join, as do Java and C#. Ada uses both launch-at-elaboration and fork.
OpenMP uses co-begin and parallel loops. RPC systems are typically based on implicit receipt.

Co-begin

The usual semantics of a compound statement (sometimes delimited with begin. . . end) call for
sequential execution of the constituent statements. A co-begin construct calls instead for
concurrent execution:

co-begin —— all n statements run concurrently
stmt 1
stmt 2

stmtn

end

Each statement can itself be a sequential or parallel compound, or (commonly) a subroutine call.
Parallel Loops

Many concurrent systems, including OpenMP, several dialects of Fortran, and the recently
announced Parallel FX Library for .NET, provide a loop whose iterations are to be executed
concurrently. In OpenMP for C, we might say

#pragma omp parallel for
for (inti=0;i1<3;i++) {
printf("thread %d here\n", i);

¥
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Launch-at-Elaboration

In several languages, Ada among them, the code for a thread may be declared with syntax
resembling that of a subroutine with no parameters. When the declaration is elaborated, a thread
is created to execute the code. In Ada (which calls its threads tasks) we may write

procedure P is
task T is

end T;
begin -- P

end P;

Task T has its own begin. . . end block, which it begins to execute as soon as control enters
procedure P. If P is recursive, there may be many instances of T at the same time, all of which
execute concurrently with each other and with whatever task is executing (the current instance
of) P. The main program behaves like an initial default task.

When control reaches the end of procedure P, it will wait for the appropriate instance of T (the
one that was created at the beginning of this instance of P) to complete before returning. This
rule ensures that the local variables of P (which are visible to T under the usual static scope
rules) are never deallocated before T is done with them.

Y

Figllﬂ.‘ 1.5 Lifetime of concurrent threads. With co-begin, parallel loops, or launch-at
elaboration (2), threads are always properly nested. With fork/join (b}, more general patterns
are possible.
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Fork/Join

Co-begin, parallel loops, and launch-at-elaboration all lead to a concurrent control-flow pattern
in which thread executions are properly nested (see Figure 12.5a). The fork operation is more
general: it makes the creation of threads an explicit, executable operation. The companion join
operation, when provided, allows a thread to wait for the completion of a previously forked
thread. Because fork and join are not tied to nested constructs, they can lead to arbitrary patterns
of concurrent control flow (Figure 12.5Db).

In addition to providing launch-at-elaboration tasks, Ada allows the programmer to define task
types:

task type T is

begin

end T;
The programmer may then declare variables of type access T (pointer to T), and
may create new tasks via dynamic allocation:

pt:access T :=new T,

The new operation is a fork; it creates a new thread and starts it executing. There is no explicit
join operation in Ada, though parent and child tasks can always synchronize with one another
explicitly if desired.

Implicit Receipt

We have assumed in all our examples so far that newly created threads will run in the address
space of the creator. In RPC systems it is often desirable to create a new thread automatically in
response to an incoming request from some other address space. Rather than have an existing
thread execute a receive operation, a server can bind a communication channel to a local thread
body or subroutine. When a request comes in, a new thread springs into existence to handle it. In
effect, the bind operation grants remote clients the ability to perform a fork within the server’s
address space, though the process is often less than fully automatic.

Early Reply

We normally think of sequential subroutines in terms of a single thread, which saves its current
context (its program counter and registers), executes the subroutine, and returns to what it was
doing before.
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The effect is the same, however, if we have two threads—one that executes the caller and
another that executes the callee. In this case, the call is essentially a fork/join pair. The caller
waits for the callee to terminate before continuing execution.

Nothing dictates, however, that the callee has to terminate in order to release the caller; all it
really has to do is complete the portion of its work on which result parameters depend the callee
can execute a reply operation that returns results to the caller without terminating. After an early
reply, the two threads continue concurrently.

IMPLEMENTATION OF THREADS

The threads of a concurrent program are usually implemented on top of one or more processes
provided by the operating system. At one extreme, we could use a separate OS process for every
thread; at the other extreme we could multiplex all of a program’s threads on top of a single
process. On a supercomputer with a separate processor for every concurrent activity, or in a
language in which threads are relatively heavyweight abstractions the one-process-per-thread
extreme is often acceptable. Many language implementations adopt an intermediate approach,
with a potentially very large number of threads running on top of some smaller number of
processes (see Figure 12.6).

The problem with putting every thread on a separate process is that processes are simply too
expensive in many operating systems. Because they are implemented in the kernel, performing
any operation on them requires a system call. Because they are general purpose, they provide
features that most languages do not need, but have to pay for anyway.

In the common two-level organization of concurrency similar code appears at both levels of the
system: the language run-time system implements threads on top of one or more processes in
much the same way that the operating system implements processes on top of one or more
physical processors.

To turn coroutines into threads, we proceed in a series of three steps.

--First, we hide the argument to transfer by implementing a scheduler that chooses which thread
to run next when the current thread yields the processor.

--Second, we implement a preemption mechanism that suspends the current thread automatically
on a regular basis, giving other threads a chance to run.

--Third, we allow the data structures that describe our collection of threads to be shared by more
than one OS process, possibly on separate processors, so that threads can run on any of the
processes.
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Flgurf 1.6 Two-level implementation of threads. A thread scheduler implemented in a library
or language run-time package, multiplexes threads on top of one or more kemel-level processes,

just as the process scheduler, implernented in the operating system kemel, multiplexes processes

on top of one or more physical processors

Uniprocessor Scheduling

At any particular time, a thread is either blocked (i.e., for synchronization) or runnable. A
runnable thread may actually be running on some process or it may be awaiting its chance to do
so. Context blocks for threads that are runnable but not currently running reside on a queue
called the ready list. Context blocks for threads that are blocked for scheduler-based
synchronization reside in data structures associated with the conditions for which they are
waiting. To yield the processor to another thread, a running thread calls the scheduler:

procedure reschedule
t : thread := dequeue(ready list)
transfer(t)

current_thread ready_list
(T

Waiting for condition foo Waiting for condition bar

. ‘\1
¥

] C L]

Figure 1.7 Data structures of a simple scheduler. A designated current_thread is running.
Threads on the ready list are runnable. Other threads are blocked, waiting for various conditions
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SYNCHRONIZATION

Synchronization is the principal semantic challenge for shared-memory concurrent programs.
Typically, synchronization serves either to make some operation atomic or to delay that
operation until some necessary precondition holds. Mutual exclusion ensures that only one
thread is executing some critical section of code at a given point in time. Critical sections
typically transform a shared data structure from one consistent state to another.

Condition synchronization allows a thread to wait for a precondition, often expressed as a
predicate on the value(s) in one or more shared variables. It is tempting to think of mutual
exclusion as a form of condition synchronization but this sort of condition would require
consensus among all extant threads, something that condition synchronization doesn’t generally
provide.

=> Busy-Wait Synchronization
=>» Nonblocking Algorithms

Busy-Wait Synchronization

Busy-wait condition synchronization is easy if we can cast a condition in the form of “location X
contains value Y ”: a thread that needs to wait for the condition can simply read X in a loop,
waiting for Y to appear. To wait for a condition involving more than one location, one needs
atomicity to read the locations together, but given that, the implementation is again a simple
loop.

e SPIN LOCKS
e BARRIERS

Spin Locks

practical spin lock needs to run in constant time and space, and for this one needs an atomic
instruction that does more than load or store. Beginning in the 1960s, hardware designers began
to equip their processors with instructions that read, modify, and write a memory location as a
single atomic operation. The simplest such instruction is known as test_and_set. It sets a Boolean
variable to true and returns an indication of whether the variable was previously false. Given
test_and_set, acquiring a spin lock is almost trivial:

while not test and set(L)
——nothing ——spin
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In practice, embedding test_and_set in a loop tends to result in unacceptable amounts of
communication on a multiprocessor, as the cache coherence mechanism attempts to reconcile
writes by multiple processors attempting to acquire the lock.

This over demand for hardware resources is known as contention, and is a major obstacle to
good performance on large machines. To reduce contention, the writers of synchronization
libraries often employ a test-and-test_and_set lock, which spins with ordinary reads.

Barriers

Data-parallel algorithms are often structured as a series of high-level steps, or

phases, typically expressed as iterations of some outermost loop. Correctness often

depends on making sure that every thread completes the previous step before any

moves on to the next. A barrier serves to provide this synchronization. The simplest way to
implement a busy-wait barrier is to use a globally shared counter, modified by an atomic
fetch_and_decrement instruction.

Nonblocking Algorithms

When a lock is acquired at the beginning of a critical section, and released at the end, no other
thread can execute a similarly protected piece of code at the same time. As long as every thread
follows the same conventions, code within the critical section is atomic—it appears to happen all
at once. But this is not the only possible way to achieve atomicity.

Semaphores

Semaphores are the oldest of the scheduler-based synchronization mechanisms.

A semaphore is basically a counter with two associated operations, P and V. A thread that calls P
atomically decrements the counter and then waits until it is non-negative. A thread that calls V
atomically increments the counter and wakes up a waiting thread, if any. It is generally assumed
that semaphores are fair, in the sense that threads complete P operations in the same order they
start them. A semaphore whose counter is initialized to 1 and for which P and V operations
always occur in matched pairs is known as a binary semaphore. It serves as a scheduler-based
mutual exclusion lock: the P operation acquires the lock; V releases it.

Implicit Synchronization

In several shared-memory languages, the operations that threads can perform on
shared data are restricted in such a way that synchronization can be implicit in
the operations themselves, rather than appearing as separate, explicit operations.

RUN-TIME PROGRAM MANAGEMENT
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Runtime is when a program is running (or being executable). That is, when you start a program
running in a computer, it is runtime for that program. In some programming languages, certain
reusable programs or "routines™ are built and packaged as a "runtime library.” These routines can
be linked to and used by any program when it is running.

Programmers sometimes distinguish between what gets embedded in a program when it
is compiler and what gets embedded or used at runtime. The former is sometimes called
"compile time."

For a number of years, technical writers resisted "runtime” as a term, insisting that something
like "when a program is run" would obviate the need for a special term. Gradually, the term crept
into general usage.

VIRTUAL MACHINES

A virtual machine (VM)provides a complete programming environment: its application
programming interface (API) includes everything required for correct execution of the programs
that run above it. We typically reserve use of the term*“ VM to environments whose level of
abstraction is comparable to that of a computer implemented in hardware. Every virtual machine
APl includes an instruction set architecture (ISA) in which to express programs. This may be the
same as the instruction set of some existing physical machine, or it may be an artificial
instruction set designed to be easier to implement in software and to generate with a compiler. In
practice, virtual machines tend to be characterized as either system VMs or process VMs. A
system VM faithfully emulates all the hardware facilities needed to run a standard OS, including
both privileged and unprivileged instructions,

memory-mapped 1/O, virtual memory, and interrupt facilities. By contrast, a process

VM provides the environment needed by a single user-level process: the unprivileged subset of
the instruction set and a library-level interface to 1/0 and other services.

System VMs are sometimes called virtual machine monitors (VMMSs), because they multiplex a
single physical machine among a collection of “guest” operating systems—that is, they monitor
the execution of multiple virtual machines, each of which runs a separate guest OS.

Process VMs were originally conceived as a way to increase program portability and to quickly
“bootstrap” languages on new hardware.

The Java Virtual Machine

Development of the language that eventually became Java began in 1990-1991, when Patrick
Naughton, James Gosling, and Mike Sheridan of Sun Microsystem began work on a
programming system for embedded devices. An early version of this system was up and running
in 1992, at which time the language was known as Oak. In 1994, after unsuccessful attempts to
break into the market for cable TV set-top boxes, the project was retargeted to web browsers, and
the name was changed to Java. The first public release of Java occurred in 1995. At that time
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code in the JVM was entirely interpreted. A JIT compiler was added in 1998 with the release of
Java 2.

Architecture Summary

The interface provided by the JVM was designed to be an attractive target for a Java compiler. It
provides direct support for all (and only) the built-in and reference types defined by the Java
language. It also enforces both definite assignment and type safety. Finally, it includes built-in
support for many of Java’s language features and standard library packages, including
exceptions, threads, garbage collection, reflection, dynamic loading, and security. Of course,
nothing requires that Java byte code (JBC) be produced from Java source.

Compilers targeting the JVM exist for many other languages, including Ruby, JavaScript,
Python, and Scheme (all of which are traditionally interpreted), as well as C, Ada, Cobol, and
others, which are traditionally compiled. There are even assemblers that allow programmers to
write JBC directly. The principal requirement, for both compilers and assemblers, is that they
generate correct class files. These have a special format understood by the JVM, and must satisfy
a variety of structural and semantic constraints.

At start-up time, a JVM is typically given the name of a class file containing the static method
main. It loads this class into memory, verifies that it satisfies a variety of required constraints,
allocates any static fields, links it to any preloaded library routines, and invokes any initialization
code provided by the programmer for classes or static fields. Finally, it calls main in a single
thread. Additional classes (needed by the initial class) may be loaded either immediately or lazily
on demand. Additional threads may be created via calls to the (built-in) methods of class Thread.
The three following subsections provide additional details on JVM

storage management, the format of class files, and the JBC instruction set.

Storage Management

Storage allocation mechanisms in the JVM mirror those of the Java language. There is a global
constant pool, a set of registers and a stack for each thread, a method area to hold executable
byte code, and a heap for dynamically allocated objects.

Per-thread data A program running on the JVM begins with a single thread.

Additional threads are created by allocating and initializing a new object of the build-in class
Thread, and then calling its start method. Each thread has a small set of base registers, a stack of
method call frames, and an optional traditional stack on which to call native (hon-Java) methods.
Each frame on the method call stack contains an array of local variables, an

operand stack for evaluation of the method’s expressions, and a reference into the constant pool
that identifies information needed for dynamic linking of called methods. Space for formal
parameters is included among the local variables. Variables that are not live at the same time can
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share a slot in the array; this means that the same slot may be used at different times for data of
different types.

Heap In keeping with the type system of the Java language, a datum in the local variable array or
the operand stack is always either a reference or a value of a built-in scalar type. Structured data
(objects and arrays) must always lie in the heap. They are allocated, dynamically, using the new
and newarray instructions. They are reclaimed automatically via garbage collection. The choice
of collection algorithm is left to the implementor of the JVM.

Class Files

Physically, a JVM class file is stored as a stream of bytes. Typically these occupy some real file
provided by the operating system, but they could just as easily be a record in a database. On
many systems, multiple class files may be combined into a Java archive (.jar) file.

Logically, a class file has a well-defined hierarchical structure. It begins with a “magic number”
(Ox_cafe_babe), as described in the sidebar on page 662. This is followed by

Major and minor version numbers of the JVM for which the file was created The constant pool
Indices into the constant pool for the current class and its superclass Tables describing the class’s
superinterfaces, fields, and methods Because the JVM is both cleaner and more abstract than a
real machine, the Java class file structure is both cleaner and more abstract than a typical object
file.

Byte Code

The byte code for a method (or for a constructor or a class initializer) appears in an entry in the
class file’s method table. It is accompanied by: An indication of the number of local variables,
including parameters The maximum depth required in the operand stack

A table of exception handler information, each entry of which indicates
— The byte code range covered by this handler

— The address (index in the code) of the handler itself

— The type of exception caught (an index into the constant pool)

Optional information for debuggers: specifically, a table mapping byte code addresses to line
numbers in the original source code and/or a table indicating which source code variable(s)
occupy which JVM local variables at which points in the byte code.

Instruction Set Java byte code was designed to be both simple and compact. Orthogonality was
a strictly secondary concern. Every instruction begins with a single-byte opcode. Arguments, if
any, occupy subsequent (unaligned) bytes, with values given in big-endian order. Most
instructions actually don’t need an argument. Five of these serve special purposes (unused, nop,
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debugger breakpoints, implementation dependent). The remainder can be organized into the
following categories.

Load/store: Move values back and forth between the operand stack and the local
variable array.

Arithmetic: Performinteger or floating point operations on values in the operand
stack.

Type conversion: “Widen” or “narrow” values among the built-in types (byte,
char, short, int, long, float, and double). Narrowing may result in a loss

of precision but never an exception.

Object management: Create or query the properties of objects and arrays; access
fields and array elements.

Operand stack management: Push and pop; duplicate; swap.

Control transfer: Perform conditional, unconditional, or multiway branches
(switch).

Method calls: Call and return from ordinary and static methods (including constructors and
initializers) of classes and interfaces.

Exceptions: throw (no instructions required for catch).

Monitors: Enter and exit (wait, notify, and notifyAll are invoked viamethod
calls).

Verification Safety was one of the principal concerns in the definition of the

Java language and virtual machine. Many of the things that can “go wrong” while executing
machine code compiled from a more traditional language cannot go wrong when executing byte
code compiled from Java. Some aspects of safety are obtained by limiting the expressiveness of
the byte-code instruction set or by checking properties at load time. One cannot jump to a
nonexistent address, for example, because method calls specify their targets symbolically by
name, and branch targets are specified as indices within the code attribute of the current method.
Similarly,where hardware allows displacement addressing fromthe frame pointer to access
memory outside the current stack frame, the JVM checks at load time to make sure that
references to local variables (specified by constant indices

into the local variable array) are within the bounds declared.

The Common Language Infrastructure

Work on the system that became the Common Language Infrastructure (CLI) began at Microsoft
Corporation in the late 1990s, and was able to benefit from experience with Java and the JVM,
which were already well established. The roots of the CLI, however, go back much further than
the advent of Java, and it is these deep roots that account for the most significant differences
between the virtual machines.
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As early as the mid-1980s, Microsoft recognized the need for interoperability among
programming languages running on Windows platforms. In a series of product offerings
spanning a decade and a half (see sidebar at bottom of page), the company developed
increasingly sophisticated versions of its Component Object Model (COM)), first to communicate
with, then to call, and finally to share data across program components written in multiple
languages.

With the success of Java, it became clear by the mid to late 1990s that a system combining

a JVM-style run-time system with the language interoperability of COM could have enormous
technical and commercial potential. The .NET project set out to realize this potential. It is in
some sense a successor to COM, not based on prior code, nor constrained by backward
compatibility, but providing a superset of COM’s functionality, and equipped with libraries that
allow it to interoperate with older programs. It includes not only a virtual machine, but extensive
libraries, servers, and tools for user interface management, database access, security services.

LATE BINDING OF MACHINE CODE

Compilation is a one-time activity, sharply distinguished from program execution. The compiler
produces a target program, typically in machine language, which can subsequently be executed
many times for many different inputs.

1. Just-in-Time and Dynamic Compilation

To promote the Java language and virtual machine, Sun Microsystems coined the slogan”write
once, run anywhere”—the idea being that programs distributed as Java byte code (JBC) could
run on a very wide range of platforms. Source code, of course, is also portable, but byte code is
much more compact, and can be interpreted without additional pre-processing. Unfortunately,
interpretation tends to be expensive. Programs running on early Java implementations could be
as much as an order of magnitude slower than compiled code in other languages. Just-in-time
compilation is, to first approximation, a technique to retain the portability of byte code while
improving execution speed. Like both interpretation and dynamic linking Because a JIT system
compiles programs immediately prior to execution, it can add significant delay to program start-
up time. Implementors face a difficult tradeoff: to maximize benefits with respect to
interpretation, the compiler should

produce good code; to minimize start-up time, it should produce that code very quickly. In
general, JIT compilers tend to focus on the simpler forms of target code improvement.
Specifically, they often limit themselves to so-called local improvements, which operate within
individual control flow constructs. Improvements at the global (whole method) and
interprocedural (whole program) level are usually too expensive to consider.

All these factors allows JIT compiler to be faster—and to produce better code— than one might
initially expect. In addition, since we are already committed to invoking the JIT compiler at run
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time, we can minimize its impact on program start-up latency by running it a bit at a time, rather
than all at once:

=> Like a lazy linker JIT compilermay performitswork incrementally. It begins by compiling
only the class file that contains the program entry point (i.e., main), leaving hooks in the
code that call into the run-time system wherever the program is supposed to call a method
in another class file. After this small amount of preparation, the program begins
execution.
When execution falls into the runtime through an unresolved hook, the runtime invokes the
compiler to load the new class file and to link it into the program.

=> To eliminate the latency of compiling even the original class file, the language
implementation may incorporate both an interpreter and a JIT compiler. Execution
begins in the interpreter. In parallel, the compiler translates portions of the program into machine
code.When the interpreter needs to call a method, it checks to see whether a compiled version is
available yet, and if so calls that version instead of interpreting the byte code.We will return to
this technique below, in the context of the HotSpot Java compiler and JVM.

= When a class file is JIT compiled, the language implementation can cache the resulting
machine code for later use. This amounts to guessing, speculatively, that the versions of
library routines employed in the current run of the program will still be current when the
program is run again. Because languages like Java and C# require the appearance of late
binding of library routines, this guess must be checked in each subsequent run. If the
check succeeds, using a cached copy saves almost the entire cost of JIT compilation.

Finally, JIT compilation affords the opportunity to perform certain kinds of code improvement
that are usually not feasible in traditional compilers. It is customary, for example, for software
vendors to ship a single compiled version of an application for a given instruction set
architecture, even though implementations of that architecture may differ in important ways,
including pipeline width and depth; the number of physical (renaming) registers; and the
number, size, and speed of the various levels of cache. A JIT compiler may be able to identify
the processor implementation on which it is running, and generate code that is tuned for that
specific implementation. More important, a JIT compiler may be able to in-line calls to
dynamically linked library routines. This optimization is particularly important in object-
oriented programs, which tend to call many small methods. For such programs, dynamic in-
lining can have a dramatic impact on performance.

Dynamic Compilation
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Language implementation may choose to delay JIT compilation to reduce the impact on
program start-up latency. In some cases, compilation must be delayed, either because the
source or byte code was not created or discovered until run time, or because we wish to
perform optimizations that depend on information gathered during execution. In these cases
we say the language implementation employs dynamic compilation. Common Lisp systems
have used dynamic compilation for many years: the language is typically compiled, but a
program can extend itself at run time. Optimization based on run-time statistics is a more
recent innovation.

Most programs spend most of their time in a relatively small fraction of the code. Aggressive
code improvement on this fraction can yield disproportionately large improvements in
program performance. A dynamic compiler can use statistics gathered by run-time profiling
to identify hot paths through the code, which it then optimizes in the background. By
rearranging the code to make hot paths contiguous in memory, it may also improve the
performance of the instruction cache.

In some situations, a dynamic compiler may even be able to perform optimization that would
be unsafe if implemented statically. In some cases, a dynamic compiler may choose to
perform optimizations that may be unsafe even in the current program, provided that
profiling suggests they will be profitable and run-time checks can determine whether they are
safe

2. Binary Translation

Just-in-time and dynamic compilers assume the availability of source code or of
byte code that retains all of the semantic information of the source. There are
times, however, when it can be useful to recompile object code. This process is
known as binary translation. It allows already-compiled programs to be run on a
machine with a different instruction set architecture.

The principal challenge for binary translation is the loss of information in

the original source-to-object code translation. Object code typically lacks both
type information and the clearly delineated subroutines and control-flow constructs
of source code and byte code. While most of this information appears in

the compiler’s symbol table, and may sometimes be included in the object file
for debugging purposes, vendors usually delete it before shipping commercial
products, and a binary translator cannot assume it will be present.

The typical binary translator reads an object file and reconstructs a control

flow graph This task is complicated by the

lack of explicit information about basic blocks.While branches (the ends of basic
blocks) are easy to identify, beginnings are more difficult: since branch targets
are sometimes computed at run time or looked up in dispatch tables or virtual
function tables, the binary translator must consider the possibility that control
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may sometimes jump into the middle of a “probably basic” block. Since translated
code will generally not lie at the same address as the original code, computed
branches must be translated into code that performs some sort of table lookup,

or falls back on interpretation.

Static binary translation is not always possible for arbitrary object code. In
addition to computed branches, problems include self-modifying code (programs
that write to their own instruction space), dynamically generated code.

Dynamic Optimization

In a long-running program, a dynamic translator may revisit hot paths and optimize

them more aggressively. A similar strategy can also be applied to programs

that don’t need translation—that is, to programs that already exist as machine code for the
underlying architecture. This sort of dynamic optimization has been

reported to improve performance by as much as 20% over already-optimized

code, by exploiting run-time profiling information.

By identifying and optimizing traces, Dynamo is able to significantly improve
locality in the instruction cache, and to apply standard code improvement techniques
across the boundaries between separately compiled modules and dynamically
loaded libraries.

IN the figure given below -- For example, it will perform register allocation jointly across
print matchings and the predicate p. It can even perform instruction scheduling across basic
blocks if it inserts appropriate compensating code on branches out of the trace. An instruction
in block test2, for example, can be moved into the loop footer if a copy is placed on the
branch to the right. Traces have proven to be a very powerful technique.
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procedure print_matchingls : set, p : predicate)
foreach e in 5
if ple)
print e

prologus

——1 loop head loop head

=%

loop foot ) loop foot
—

Y.

r epilogue  |[<=—

Figure 154 Creation ofa partial execution trace. Procedure print_matching (shown at top) is
often called with a particular predicate, p, which is usually false. The control flow graph (shown
at left, with hot blocks in bold and the hot path in grey) can be recrganized at run time to
improve instruction-cache locality and to optimize across abstraction boundanes (trace shown at

nght).

3. Binary Rewriting

While the goal of a binary optimizer is to improve the performance of a program without altering
its behavior, one can also imagine tools designed to change that behavior. Binary rewriting is a
general technique to modify existing executable programs, typically to insert instrumentation of
some kind. The most common form of instrumentation collects profiling information. One might
count the number of times that each subroutine is called, for example, or the number of times
that each loop iterates

Such counts can be stored in a buffer in memory, and dumped at the end of execution.
Alternatively, one might log all memory references. Such a log will generally need to be sentto a
file as the program runs—it will be too long to fit in memory.

In addition to profiling, binary rewriting can be used to
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=>» Simulate new architectures: operations of interest to the simulator are replaced with code
that jJumps into a special run-time library (other code runs at native speed).

=>» Evaluate the coverage of test suites, by identifying paths through the code that are not
explored by a series of tests.

=> Implement model checking for parallel programs, a process that exposes race conditions
by forcing a program through different interleavings of operations in different threads.
“Audit’the quality of a compiler’s optimizations. For example, one might check whether
the value loaded into a register is always the same as the value that was already there
(such loads suggest that the compiler may have failed to realize that the load was
redundant).
Insert dynamic semantic checks into a program that lacks them. Binary rewriting can be
used not only for simple checks like null-pointer dereference and arithmetic overflow, but
for a wide variety of memory access errors as well, including uninitialized variables,
dangling references, memory leaks, “double deletes” (attempts to deallocate an already
deallocated block of memory), and access off the ends of dynamically allocated arrays.

4. Mobile Code and Sandboxing

Portability is one of the principal motivations for late binding of machine code. Code that has
been compiled for one machine architecture or operating system cannot generally be run on
another. Code in a byte code (JBC, CIL) or scripting language (JavaScript, Visual Basic),
however, is compact and machine independent: it can easily be moved over the Internet and
run on almost any platform. Such mobile code is increasingly common.

Every major browser supports JavaScript; most enable the execution of Java applets as well.
Visual Basic macros are commonly embedded not only in pages meant for viewing with
Internet Explorer, but also in Excel, Word, and Outlook documents distributed via email.
Increasingly, cell phone platforms are using mobile code to distribute games, productivity
tools, and interactive media that run on the phones themselves.

In some sense, mobile code is nothing new: almost all our software comes from other
sources; we buy it on a DVD or download it over the Internet and install it on our machines.
Historically, this usage model has relied on trust (we assume that software from a well-
known company will be safe) and on the very explicit and occasional nature of installation.
What has changed in recent years is the desire to download code frequently, from potentially
untrusted sources, and often without the conscious awareness of the user. Mobile code carries
a variety of risks. It may access and reveal confidential information (spyware). It may
interfere with normal use of the computer in annoying ways (adware). It may damage
existing programs or data, or save copies of itself that run without the user’s intent (malware
of various kinds). In the worst cases, it may use the host machine as a “zombie” from which
to launch attacks on other users.
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To protect against unwanted behavior, both accidental and malicious, mobile code must be
executed in some sort of sandbox, Sandbox creation is difficult because of the variety of
resources that must be protected. At a minimum, one needs to monitor or limit access to
processor cycles, memory outside the code’s own instructions and data, the file system,
network interfaces, other devices (passwords, for example, may be stolen by snooping the
keyboard), the window system (e.g., to disable pop-up ads), and any other potentially
dangerous services provided by the operating system.

Sandboxing mechanisms lie at the boundary between language implementation and
operating systems. Traditionally, OS-provided virtual memory techniques might be used to
limit access to memory, but this is generally too expensive for many forms of mobile code.
The two most common techniques today—both of which rely on technology discussed in this
chapter—are binary rewriting and execution in an untrusting interpreter. Both cases are
complicated by an inherent tension between safety and utility: the less we allow untrusted
code to do, the less useful it can be. No single policy is likely to work in all cases. Applets
may be entirely safe if all they can do is manipulate the image in a window, but macros
embedded in a spreadsheet may not be able to do their job without changing the user’s data.
A major challenge for future work is to find a way to help users— who cannot be expected to
understand the technical details—to make informed decisions about what and what not to
allow in mobile code

INSPECTION/INTROSPECTION

Symbol table metadata makes it easy for utility programs—just-in-time and dynamic
compilers, optimizers, debuggers, profilers, and binary rewriters—to inspect a program and
reason about its structure and types There is no reason, however, why the use of metadata
should be limited to outside tools, and indeed it is not: Lisp has long allowed a program to
reason about its own internal structure and types (this sort of reasoning is sometimes called
introspection).

Java and C# provide similar functionality through a reflection API that allows a program to
peruse its own metadata. Reflection appears in several other languages as well, including
Prolog and all the major scripting languages. In a dynamically typed language such as Lisp,
reflection is essential: it allows a library or application function to type check its own
arguments. In a statically typed language, reflection supports a variety of programming
idioms that were not traditionally feasible.

REFLECTION
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Trivially, reflection can be useful when printing diagnostics. Suppose we are trying to debug
an old-style (nongeneric) queue in Java, and we want to trace the objects that move through
it.

In the dequeue method, just before returning an object rtn of type Object, we might write

System.out.printin("Dequeued a " + rtn.getClass().getName());

If the dequeued object is a boxed int,we will see

Dequeued a java.lang.Integer

More significantly, reflection is useful in programs that manipulate other programs. Most
program development environments, for example, have mechanisms to organize and “pretty-
print” the classes, methods, and variables of a program.

In a language with reflection, these tools have no need to examine source code: if they load
the already-compiled program into their own address space, they can use the reflection API
to query the symbol table information created by the compiler. Interpreters, debuggers, and
profilers can work in a similar fashion. In a distributed system, a program can use reflection
to create a general-purpose serialization mechanism, capable of transforming an almost
arbitrary structure into a linear stream of bytes that can be sent over a network and
reassembled at the other end.

In the increasingly dynamic world of Internet applications, one can even create conventions
by which a program can “query” a newly discovered object to see what methods it
implements, and then choose which of these to call.

There are dangers, of course, associatedwith the undisciplined use of reflection. Because it
allows an application to peek inside the implementation of a class (e.g., to list its private
members), reflection violates the normal rules of abstraction and information hiding. It may
be disabled by some security policies (e.g., in sandboxed environments). By limiting the
extent to which target code can differ from the source, it may preclude certain forms of code
improvement.

SYMBOLIC DEBUGGING
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Most programmers are familiar with symbolic debuggers: they are built into most
programming language interpreters, virtual machines, and integrated program development
environments. They are also available as stand-alone tools, of which the best known is
GNU’s gdb. The adjective symbolic refers to a debugger’s understanding of high-level
language syntax—the symbols in the original program. Early debuggers understood assembly
language only.

In a typical debugging session, the user starts a program under the control of the debugger, or
attaches the debugger to an already running program. The debugger then allows the user to
perform two main kinds of operations. One kind inspects or modifies program data; the other
controls execution: starting, stopping, stepping, establishing breakpoints and watchpoints. A
breakpoint specifies that execution should stop if it reaches a particular location in the source
code. A watchpoint specifies that execution should stop if a particular variable is read or
written. Both breakpoints and watchpoints can typically be made conditional, so that
execution stops only if a particular Boolean predicate evaluates to true. Both data and control
operations depend critically on symbolic information. Both data and control operations also
depend on the ability to manipulate a program from outside: to stop and start it, and to read
and write its data.

This control can be implemented in at least three ways. The easiest occurs in interpreters.
Since an interpreter has direct access to the program’s symbol table and is “in the loop” for
the execution of every statement, it is a straightforward matter to move back and forth
between the program and the debugger, and to give the latter access to the former’s data.

For compiled programs, the third implementation of debugger control is by far the most
common. It depends on support from the operating system. In Unix, it employs a kernel
service known as ptrace. The ptrace kernel call allows a debugger to “grab” (attach to) an
existing process or to start a process under its control. The tracing process (the debugger) can
intercept any signals sent to the traced process by the operating system and can read and
write its registers and memory. If the traced process is currently running, the debugger can
stop it by sending it a signal. If it is currently stopped, the debugger can specify the address at
which it should resume execution, and can ask the kernel to run it for a single instruction (a
process known as single stepping ) or until it receives another signal.

Perhaps the most mysterious parts of debugging from the user’s perspective are the
mechanisms used to implement breakpoints, watchpoints, and single stepping. The default
implementation, which works on any modern processor, relies on the ability to modify the
memory space of the traced process—in particular, the portion containing the program’s
code.

PERFORMANCE ANALYSIS
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Before placing a debugged program into production use, one often wants to understand and if
possible improve—its performance Perhaps the simplest way to measure, at least
approximately, the amount of time spent in each part of the code is to sample the program
counter (PC) periodically.

This approach was exemplified by the classic prof tool in Unix. By linking with a special
prof library, a program could arrange to receive a periodic timer signal—once a millisecond,
say—in response to which it would increment a counter associated with the current PC. After
execution, the prof post-processor would correlate the counters with an address map of the
program’s code and produce a statistical summaryof the percentage of time spent in each
subroutine and loop.

While simple, prof had some serious limitations. Its results were only approximate, and could
not capture fine-grain costs. It also failed to distinguish among calls to a given routine
frommultiple locations. If we want to know which of A, B,

Call graph profiling and C is the biggest contributor to program run time, it is not particularly
helpful to learn that all three of them call D where most of the time is actually spent. If we
want to know whether it is A’s Ds, B’s Ds, or C’s Ds that are so expensive, we can use the
(slightly) more recent gprof tool, which relies on compiler support to instrument procedure
prologues. As the instrumented program runs, it logs the number of times that D is called

from each location. The gprof post-processor then assumes that the total time spent in D can
accurately be apportioned among the call sites according to the relative number of calls.
More sophisticated tools log not only the caller and callee but also the stack backtrace (the
contents of the dynamic chain), allowing them to cope with the case in which D consumes
twice as much time when called from A as it does when called from B or C.

If our program is underperforming for algorithmic reasons, it may be enough to know where
it is spending the bulk of its time. We can focus our attention on improving the source code
in the places it will matter most. If the program is underperforming for other reasons,
however, we generally need to know why. Is it cache misses due to poor locality, perhaps?
Branch mispredictions? Poor pipeline performance? Tools to address these and similar
questions generally rely on more extensive instrumentation of the code or on some sort of
hardware support.

As an example of instrumentation, consider the task of identifying basic blocks that execute
an unusually small number of instructions per cycle. To find such blocks we can combine

(1) the aggregate time spent in each block (obtained by statistical sampling),

(2) a count of the number of times each block executes (obtained via instrumentation), and
(3) static knowledge of the number of instructions in each block. If basic block i contains ki

+ N =3 kin; be the total number of instructions in the run. If statistical sampling
indicates that block i accounts for x;% of the time in the run and x; is significantly

large number of cache misses]



instructions and executes ni times during a run of a program, it contributes kini dynamic
instructions to that run. Let

Most modern processors provide a set of performance counters that can be used to good effect
by performance analysis tools. The Intel PentiumM processor, for example, has two performance
counters that can be configured by the kernel to count any of 47 different kinds of events,
including branch mispredictions; TLB (address translation) misses; and various kinds of cache
misses, interrupts, executed instructions, and pipeline stalls. Unfortunately, performance counters
are generally a scarce resource (one might often wish for many more of them). Their number,
type, and mode of operation varies greatly from processor to processor; direct access to them is
usually available only in kernel mode; and operating systems do not always export that access to
user-level programs with a convenient or uniform interface. Portable tools that make use of
performance counters are an active topic of research.
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CONTENT BEYOND SYLLABUS
Python programming paradigms

Python supports three types of Programming paradigms
e Object Oriented programming paradigms
e Procedure Oriented programming paradigms
e Functional programming paradigms

Object Oriented programming paradigms
In the object-oriented programming paradigm, objects are the key element of paradigms.
Objects can simply be defined as the instance of a class that contains both data members and
the method functions. Moreover, the object-oriented style relates data members and methods
functions that support encapsulation and with the help of the concept of an inheritance, the
code can be easily reusable but the major disadvantage of object-oriented programming
paradigm is that if the code is not written properly then the program becomes a monster.

Advantages

o Relation with Real world entities

o Code reusability

e Abstraction or data hiding
Disadvantages

o Data protection

e Not suitable for all types of problems

e Slow Speed
Example:

# class Emp has been defined here
class Emp:
def __init__(self, name, age):
self.name = name

self.age = age
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def info(self):

print("Hello, % s. You are % s old.” % (self.name, self.age))

# Objects of class Emp has been

# made here

Emps = [Emp("John", 43),
Emp("Hilbert", 16),

Emp("Alice", 30)]

# Objects of class Emp has been
# used here
for emp in Emps:

emp.info()

Output:
Hello, John. You are 43 old.

Hello, Hilbert. You are 16 old.
Hello, Alice. You are 30 old.

Procedural programming paradigms

In Procedure Oriented programming paradigms, series of computational steps are divided
modules which means that the code is grouped in functions and the code is serially executed
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step by step so basically, it combines the serial code to instruct a computer with each step to
perform a certain task. This paradigm helps in the modularity of code and modularization is
usually done by the functional implementation. This programming paradigm helps in an easy
organization related items without difficulty and so each file acts as a container.

Advantages

e General-purpose programming

e Code reusability

« Portable source code
Disadvantages

o Data protection

e Not suitable for real-world objects
« Harder to write

Example:

# Procedural way of finding sum

# of a list

mylist = [10, 20, 30, 40]

# modularization is done by
# functional approach
def sum_the_list(mylist):
res=0
for val in mylist:
res += val

return res
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print(sum_the_list(mylist))

Output:
100

Functional programming paradigms
Functional programming paradigms is a paradigm in which everything is bind in pure
mathematical functions style. It is known as declarative paradigms because it uses declarations
overstatements. It uses the mathematical function and treats every statement as functional
expression as an expression is executed to produce a value. Lambda functions or Recursion are
basic approaches used for its implementation. The paradigms mainly focus on “what to solve”
rather than “how to solve”. The ability to treat functions as values and pass them as an
argument make the code more readable and understandable.

Advantages

e Simple to understand

o Making debugging and testing easier

e Enhances the comprehension and readability of the code
Disadvantages

e Low performance

e Writing programs is a daunting task

o Low readability of the code

Example:

# Functional way of finding sum of a list

import functools

mylist = [11, 22, 33, 44]

# Recursive Functional approach

def sum_the_list(mylist):

if len(mylist) == 1:
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return mylist[0]

else:

return mylist[0] + sum_the_list(mylist[1:])

# lambda function is used

print(functools.reduce(lambda X, y: X +y, mylist))

Output:

110
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